早教吧作业答案频道 -->数学-->
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x),x等于0时,f(x)=0,.(K>0)在x=0可导?2.为什么y=x^3的绝对值在x=0处不可导?可以用导数定义证明一下吗?3.ln(x+根号下1+x^2)
题目详情
导数相关的题.
1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x),x等于0时,f(x)=0,.(K>0)在x=0可导?
2.为什么y=x^3的绝对值在x=0处不可导?可以用导数定义证明一下吗?
3.ln(x+根号下1+x^2) 的导数是什么?1/根号下1+x^2.这个求导有什么技巧吗,利用复合函数求导,我始终解不出参考答案来.
1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x),x等于0时,f(x)=0,.(K>0)在x=0可导?
2.为什么y=x^3的绝对值在x=0处不可导?可以用导数定义证明一下吗?
3.ln(x+根号下1+x^2) 的导数是什么?1/根号下1+x^2.这个求导有什么技巧吗,利用复合函数求导,我始终解不出参考答案来.
▼优质解答
答案和解析
1. 利用导数的定义
f'(0)=lim [f(x)-f(0)]/x=lim x^ksin(1/x)/x=lim x^(k-1)sin(1/x)
因为lim sin(1/x)不存在,但是sin(1/x)有界,所以必须乘上个无穷小才能有极限,因此要求x^(k-1)→0,即k-1>0,从而当k>1时函数在x=0点可导.极限过程为x→0
2. 考虑lim [y(x)-y(0)]/x=lim |x³|/x
当x→0+时,lim |x³|/x=limx²=0
当x→0-时,lim |x³|/x=lim -x²=0
因为左右极限存在且相等,所以当x→0时,lim [y(x)-y(0)]/x存在,从而函数y=|x³|在x=0点可导!
可能你题目抄错了!
3.令t=x+(1+x²)^(1/2)
则 y=lnt,
dy/dx=(dy/dt)*(dt/dx)
=(1/t)*{1+x/[(1+x²)^(1/2)]}
={1/[x+(1+x²)^(1/2)]}*{1+x/[(1+x²)^(1/2)]}
={1/[x+(1+x²)^(1/2)]}*{x+[(1+x²)]^(1/2)}÷[(1+x²)]^(1/2)
=1/{[(1+x²)]^(1/2)}
主要要理解复合函数的求导方法!由外及里,一层一层求导,不能漏掉某一项!
f'(0)=lim [f(x)-f(0)]/x=lim x^ksin(1/x)/x=lim x^(k-1)sin(1/x)
因为lim sin(1/x)不存在,但是sin(1/x)有界,所以必须乘上个无穷小才能有极限,因此要求x^(k-1)→0,即k-1>0,从而当k>1时函数在x=0点可导.极限过程为x→0
2. 考虑lim [y(x)-y(0)]/x=lim |x³|/x
当x→0+时,lim |x³|/x=limx²=0
当x→0-时,lim |x³|/x=lim -x²=0
因为左右极限存在且相等,所以当x→0时,lim [y(x)-y(0)]/x存在,从而函数y=|x³|在x=0点可导!
可能你题目抄错了!
3.令t=x+(1+x²)^(1/2)
则 y=lnt,
dy/dx=(dy/dt)*(dt/dx)
=(1/t)*{1+x/[(1+x²)^(1/2)]}
={1/[x+(1+x²)^(1/2)]}*{1+x/[(1+x²)^(1/2)]}
={1/[x+(1+x²)^(1/2)]}*{x+[(1+x²)]^(1/2)}÷[(1+x²)]^(1/2)
=1/{[(1+x²)]^(1/2)}
主要要理解复合函数的求导方法!由外及里,一层一层求导,不能漏掉某一项!
看了 导数相关的题.1.当K取何值...的网友还看了以下:
1.一个等差数列{an}中,an/a2n是一个与n无关的常数,则此常数是多少?(1或1/2)2.在 2020-05-14 …
在等差数列{an}中,a1=1,a5=9.(1)求a3;(2)记bn=2an,证明:数列{bn}是 2020-05-14 …
已知等差数列{an}满足a1+a(2n-1)=2n设Sn是数列{1/an}的前n项和,记f(n)= 2020-06-03 …
(1)若等差数列{an}的首项为a1=C11−2m5m-A2m−211−3m(m∈N*),公差是( 2020-06-11 …
(2011湖北,文17)在线等,成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13 2020-07-09 …
已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=2a211-a9-a13,则数列{ 2020-07-18 …
设[x]是小于或等于正数x的最大整数(即正数x的整数部分),例如[4.25]=4,[0.82]=0 2020-07-25 …
等比数列{an}中,an>0(n∈N正),其项数为偶数且不小于6.它的所有项之和等于它的偶数项之和 2020-07-30 …
1已知一个无穷等差数列的首项为a1,公差为d:(1)取出数列中的所有奇数项,组成一个新的数列,这个 2020-08-02 …
1.设{an}为等差数列,{bn}为等比数列,且a1=b1=1,a2+a4=b3,b2b4=a3,分 2020-11-29 …