早教吧作业答案频道 -->数学-->
已知函数f(x)=3x^2-2mx-1,g(x)=|x|-7/4已知函数f(x)=3x^2-2mx-1,g(x)=|x|-7/4(1)求证:一定存在x0∈(-1,2),使f(x0)≥0;(2)若对任意的x∈(-1,2),f(x)≥g(x),求m的取值范围;(3)h(x)为
题目详情
已知函数f(x)=3x^2-2mx-1,g(x)=|x|-7/4 已知函数f(x)=3x^2-2mx-1,g(x)=|x|-7/4
(1)求证:一定存在x0∈(-1,2),使f(x0)≥0;
(2)若对任意的x∈(-1,2),f(x)≥g(x),求m的取值范围;
(3)h(x)为奇函数,当x≥0时,h(x)=f(x)+2mx+1,若3h(x)≤2h(x+sinα)对α∈R恒成立,求x的取值范围.希望有较为详细,有一定准确率的解答,
可以的话,说一下任意与存在的区别!
(1)求证:一定存在x0∈(-1,2),使f(x0)≥0;
(2)若对任意的x∈(-1,2),f(x)≥g(x),求m的取值范围;
(3)h(x)为奇函数,当x≥0时,h(x)=f(x)+2mx+1,若3h(x)≤2h(x+sinα)对α∈R恒成立,求x的取值范围.希望有较为详细,有一定准确率的解答,
可以的话,说一下任意与存在的区别!
▼优质解答
答案和解析
(1)本题对m进行分类
1.m = 0 ,f(x)= 3x² - 1,取x0 = 1,f(x0)= 2 > 0
2.m > 0.5 或 -0.25 < m < 0,取x0 = -1/(2m),f(x0)= 3x0² > 0
3.0 < m ≤ 0.5,则 -2m ≥ -1,f(x)≥ 3x² - x -1,取x0 = 1,f(x0)= 1 > 0
4.m ≤ -0.25,则 -2m ≥ 0.5,f(x)≥ 3x² +0.5x -1,取x0 = 1,f(x0)= 2.5 > 0
综上所述,无论m取何值时,都存在x0∈(-1,2),使f(x0)≥0
(2)
构造h(x)= f(x)-g(x),要使f(x)≥g(x),即h(x)≥ 0
h(x)= 3x^2 - 2mx - 1 - |x| + 7/4 = 3x^2 - 2mx + 3/4 - |x|,
当-1 < x < 0,h(x)= 3x^2 - (2m - 1)x + 3/4
由图象可知,h(x)≥ 0(-1 < x < 0)必须满足如下条件
(2m - 1)/ 6 ≤ -1,h(-1)≥0(方程组无解)
或者 (2m - 1)/ 6 > 0,h(0)≥ 0(方程组的解为m ≥ 0.5)
或者 -1 < (2m - 1)/ 6 < 0,h((2m - 1)/ 6)≥ 0(方程组的解为-1 ≤ m < 2)
综上所述,为m ≥ -1 ①
h(x)≥ 0(0 ≤ x < 2)必须满足如下条件
(2m - 1)/ 6 ≤ 0,h(0)≥0(方程组的解为m ≤ -0.5)
或者 (2m - 1)/ 6 > 2,h(2)≥ 0(方程组无解)
或者 0 < (2m - 1)/ 6 < 2,h((2m - 1)/ 6)≥ 0(方程组的解为-2 ≤ m ≤1)
综上所述,为m ≤ 1 ②
综合①②得,-1 ≤ m < 1
(3)
第(3)题可以这样
取α = 0,则3h(x)≤ 2h(x + 0)也要成立,故在x > 0上不成立
在x ≤ 0上的解析式为h(x)= -3x²,要使3h(x)≤2h(x+sinα)对α∈R恒成立,即
3h(x)≤ 2h(x - 1)成立(因为h(x)在x ≤ 0上单调递增)
解得x的取值范围为x ≤ -2 - √6
1.m = 0 ,f(x)= 3x² - 1,取x0 = 1,f(x0)= 2 > 0
2.m > 0.5 或 -0.25 < m < 0,取x0 = -1/(2m),f(x0)= 3x0² > 0
3.0 < m ≤ 0.5,则 -2m ≥ -1,f(x)≥ 3x² - x -1,取x0 = 1,f(x0)= 1 > 0
4.m ≤ -0.25,则 -2m ≥ 0.5,f(x)≥ 3x² +0.5x -1,取x0 = 1,f(x0)= 2.5 > 0
综上所述,无论m取何值时,都存在x0∈(-1,2),使f(x0)≥0
(2)
构造h(x)= f(x)-g(x),要使f(x)≥g(x),即h(x)≥ 0
h(x)= 3x^2 - 2mx - 1 - |x| + 7/4 = 3x^2 - 2mx + 3/4 - |x|,
当-1 < x < 0,h(x)= 3x^2 - (2m - 1)x + 3/4
由图象可知,h(x)≥ 0(-1 < x < 0)必须满足如下条件
(2m - 1)/ 6 ≤ -1,h(-1)≥0(方程组无解)
或者 (2m - 1)/ 6 > 0,h(0)≥ 0(方程组的解为m ≥ 0.5)
或者 -1 < (2m - 1)/ 6 < 0,h((2m - 1)/ 6)≥ 0(方程组的解为-1 ≤ m < 2)
综上所述,为m ≥ -1 ①
h(x)≥ 0(0 ≤ x < 2)必须满足如下条件
(2m - 1)/ 6 ≤ 0,h(0)≥0(方程组的解为m ≤ -0.5)
或者 (2m - 1)/ 6 > 2,h(2)≥ 0(方程组无解)
或者 0 < (2m - 1)/ 6 < 2,h((2m - 1)/ 6)≥ 0(方程组的解为-2 ≤ m ≤1)
综上所述,为m ≤ 1 ②
综合①②得,-1 ≤ m < 1
(3)
第(3)题可以这样
取α = 0,则3h(x)≤ 2h(x + 0)也要成立,故在x > 0上不成立
在x ≤ 0上的解析式为h(x)= -3x²,要使3h(x)≤2h(x+sinα)对α∈R恒成立,即
3h(x)≤ 2h(x - 1)成立(因为h(x)在x ≤ 0上单调递增)
解得x的取值范围为x ≤ -2 - √6
看了 已知函数f(x)=3x^2-...的网友还看了以下:
1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).(2)已知f 2020-05-13 …
1.lim[(ln(1+x))/(x^3)+f(x)/(x^2)]=0x->0求f''(0).2. 2020-06-10 …
设二次函数f(x)=ax^2+bx+c满足条件:f(0)=2,f(1)=-1,且图像在x轴上所截得 2020-07-07 …
已知集合A={1,2,3},B={-1,o,1}已知集合A={1,2,3},B={-1,0,1}, 2020-07-30 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
已知函数fx是定义在实数集R上的不恒为零的偶函数,对任意实数x有xf(x+1)=(1+x)f(x), 2020-11-18 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …