早教吧作业答案频道 -->数学-->
【相似三角形】如图,已知从平行四边形ABCD的对角线的交点O引OE⊥BC交AB的延长线于点F如图,已知从平行四边形ABCD的对角线的交点O引OE⊥BC交AB的延长线于点F,若AB=a,BC=b,BE=c,求BF的长度.
题目详情
【相似三角形】如图,已知从平行四边形ABCD的对角线的交点O引OE⊥BC交AB的延长线于点F
如图,已知从平行四边形ABCD的对角线的交点O引OE⊥BC交AB的延长线于点F,若AB=a,BC=b,BE=c,求BF的长度.

如图,已知从平行四边形ABCD的对角线的交点O引OE⊥BC交AB的延长线于点F,若AB=a,BC=b,BE=c,求BF的长度.

▼优质解答
答案和解析
首先你这个题里和图上写的 F和E是反着的了 我按题里的说
辅助线都做好了,其实就很简单.
OG // BE => BEF和GOF相似
所以 BE / OG = BF / GF ----- (1)式
其中 BE = c,OG = BC/2 = b/2 ,GF = GB + BF = AB/2 + BF = a/2 +BF
所以带入(1)式变成:c / (b/2) = BF / (a/2 + BF)
两边取倒数:b/2c = (a/2 +BF)/BF = a/2BF + 1
所以 a/2BF = b/2c -1 => BF = a/(b/c -2) = ac/(b-2c)
辅助线都做好了,其实就很简单.
OG // BE => BEF和GOF相似
所以 BE / OG = BF / GF ----- (1)式
其中 BE = c,OG = BC/2 = b/2 ,GF = GB + BF = AB/2 + BF = a/2 +BF
所以带入(1)式变成:c / (b/2) = BF / (a/2 + BF)
两边取倒数:b/2c = (a/2 +BF)/BF = a/2BF + 1
所以 a/2BF = b/2c -1 => BF = a/(b/c -2) = ac/(b-2c)
看了 【相似三角形】如图,已知从平...的网友还看了以下:
关于圆的证明题如图,C为圆O的直径AB上一点,圆B过点C,与AB的延长线交于点D,与圆O的一个交点 2020-05-16 …
如图,PC切⊙O于A,PO的延长线交⊙O于B,BC切⊙于点B.若CB:PC=1:2,求PO:OB的 2020-05-17 …
如图1,AB是O的直径,E是AB延长线上一点,EC切O于点C,OP⊥AO交AC于点P,交EC的延长 2020-06-13 …
如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA,AO,并 2020-07-21 …
已知,如图,O是△ABC的外接圆,OD⊥BC交O于点D,CE平分∠ACB交AB于点E,交O于点H, 2020-07-22 …
利用直尺和圆规作一个角等于已知角的作法如下:①以点O为圆心,以任意长为半径画弧,分别交OA、OB于 2020-07-26 …
(2011•武汉)如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B, 2020-11-03 …
如上如图所示,求作一个角等于已知角∠AOB.作法:(1)作射线;(2)以为圆心,以为半径画弧,交OA 2020-11-06 …
如图,OA,OD是O半径,过A作O的切线,交∠AOD的平分线于点C,连接CD,延长AO交O于点E,交 2020-11-26 …
如图,AB为⊙O的直径,C为圆上一点,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E, 2020-12-01 …