早教吧作业答案频道 -->其他-->
如图,在四边形ABCD中,AC与BD相交于点O,AC⊥BD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的是()A.∠OAB=∠OBAB.∠OBA=∠OBCC.AD∥BCD.AD=BC
题目详情
如图,在四边形ABCD中,AC与BD相交于点O,AC⊥BD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的是( )A.∠OAB=∠OBA
B.∠OBA=∠OBC
C.AD∥BC
D.AD=BC
▼优质解答
答案和解析
A、∵AC⊥BD,BO=DO,
∴AC是BD的垂直平分线,
∴AB=AD,CD=BC,
∴∠ABD=∠ADB,∠CBD=∠CDB,
∵∠OAB=∠OBA,
∴∠OAB=∠OBA=45°,
∵OC与OA的关系不确定,
∴无法证明四边形ABCD的形状,故此选项错误;
B、∵AC⊥BD,BO=DO,
∴AC是BD的垂直平分线,
∴AB=AD,CD=BC,
∴∠ABD=∠ADA,∠CBD=∠CDB,
∵∠OBA=∠OBC,
∴∠ABD=∠ADB=∠CBD=∠CDB,
BD=BD,
∴△ABD≌△CBD,
∴AB=BC=AD=CD,
∴四边形ABCD是菱形,故此选项正确;
C、∵AD∥BC,
∴∠DAC=∠ACB,
∵∠AOD=∠BOC,BO=DO,
∴△AOD≌△BOC,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,故此选项正确;
D、∵AD=BC,BO=DO,
∠BOC=∠AOD=90°,
∴△AOD≌△BOC,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,故此选项正确.
故选:A.

∴AC是BD的垂直平分线,
∴AB=AD,CD=BC,
∴∠ABD=∠ADB,∠CBD=∠CDB,
∵∠OAB=∠OBA,
∴∠OAB=∠OBA=45°,
∵OC与OA的关系不确定,
∴无法证明四边形ABCD的形状,故此选项错误;
B、∵AC⊥BD,BO=DO,
∴AC是BD的垂直平分线,
∴AB=AD,CD=BC,
∴∠ABD=∠ADA,∠CBD=∠CDB,
∵∠OBA=∠OBC,
∴∠ABD=∠ADB=∠CBD=∠CDB,
BD=BD,
∴△ABD≌△CBD,
∴AB=BC=AD=CD,
∴四边形ABCD是菱形,故此选项正确;
C、∵AD∥BC,
∴∠DAC=∠ACB,
∵∠AOD=∠BOC,BO=DO,
∴△AOD≌△BOC,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,故此选项正确;
D、∵AD=BC,BO=DO,
∠BOC=∠AOD=90°,
∴△AOD≌△BOC,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,故此选项正确.
故选:A.
看了如图,在四边形ABCD中,AC...的网友还看了以下:
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0 2020-07-26 …
A、B、C都是金属,把A、B组成原电池时,A为负极;把B放入C的盐溶液中,B的表面附着一层金属C. 2020-07-29 …
a、b、c表示三个数,则乘法结合律可以用()式子表示.A.(a+b)+c=a+(b+c)B.(a× 2020-07-31 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-08-01 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …
下列能保证a⊥∂(a,b,c为直线,∂为平面)的条件是()A.b,c⊂∂.a⊥b,a⊥cB.b,c⊂ 2020-11-02 …
为加粗字选出正确的读音。[](1)一蓑烟雨任平生(A.shu1iB.su#C.1i)(2)红藕香残玉 2020-11-05 …
听力测试十(20分)I.听句子,选择正确的图画(5分)1.A.B.C.2.A.B.C.3.A.B.C 2020-12-09 …