早教吧作业答案频道 -->其他-->
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x都成立,则称f(x)是回旋函数,且阶数为a.(Ⅰ)试判断函数f(x)=sinπx,g(x)=x2是否为阶数
题目详情
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x都成立,则称f(x)是回旋函数,且阶数为a.
(Ⅰ)试判断函数f(x)=sinπx,g(x)=x2是否为阶数为1的回旋函数,并说明理由;
(Ⅱ)证明:函数h(x)=2x是回旋函数;
(Ⅲ)证明:若函数f(x)是一个阶数为a(a>0)的回旋函数,则函数f(x)在[0,2014a]上至少存在2014个零点.
(Ⅰ)试判断函数f(x)=sinπx,g(x)=x2是否为阶数为1的回旋函数,并说明理由;
(Ⅱ)证明:函数h(x)=2x是回旋函数;
(Ⅲ)证明:若函数f(x)是一个阶数为a(a>0)的回旋函数,则函数f(x)在[0,2014a]上至少存在2014个零点.
▼优质解答
答案和解析
(Ⅰ)对于f(x)=sin(πx),sinπ(x+1)+sinπx=-sinπx+sinπx=0,
对任意实数x成立,所以f(x)=sin(πx)是1阶回旋函数.
对于g(x)=x2,则(x+1)2+x2=0对任意实数都不成立,故g(x)=x2不是1阶回旋函数.
(Ⅱ)证明:对于h(x)=2x,2x+a+a•2x=0⇔2a=-a,则a<0,
令m(x)=2x+x,m(-1)<0,m(0)>0,则方程必有一解a,且-1<a<0,
故函数h(x)=2x是回旋函数.
(Ⅲ)证明:若函数f(x)是一个阶数为a(a>0)的回旋函数,
则f(x+a)+af(x)=0对任意的实数x都成立,即有f(x+a)=-af(x),
由于a>0,则f(x+a)与f(x)异号,由零点存在定理得,在区间(x,x+a)上必有一个零点,
可令x=0,a,2a,3a,…,2013a,则函数f(x)在[0,2014a]上至少存在2014个零点.
对任意实数x成立,所以f(x)=sin(πx)是1阶回旋函数.
对于g(x)=x2,则(x+1)2+x2=0对任意实数都不成立,故g(x)=x2不是1阶回旋函数.
(Ⅱ)证明:对于h(x)=2x,2x+a+a•2x=0⇔2a=-a,则a<0,
令m(x)=2x+x,m(-1)<0,m(0)>0,则方程必有一解a,且-1<a<0,
故函数h(x)=2x是回旋函数.
(Ⅲ)证明:若函数f(x)是一个阶数为a(a>0)的回旋函数,
则f(x+a)+af(x)=0对任意的实数x都成立,即有f(x+a)=-af(x),
由于a>0,则f(x+a)与f(x)异号,由零点存在定理得,在区间(x,x+a)上必有一个零点,
可令x=0,a,2a,3a,…,2013a,则函数f(x)在[0,2014a]上至少存在2014个零点.
看了若对于定义在R上的连续函数f(...的网友还看了以下:
英语翻译1、安排关于样品测试组数的专题培训2、实验室反馈实际样品测试组数3、金额不一致时与报价人员 2020-04-08 …
设[X]表示不大于x数的最大整数且[X]=X-[X],则[兀]+[-兀]=? 2020-05-13 …
你知道小李数学考了多少分吗?小强数学测验考了95分.小强他比我的考试分数的八分之九还多5分.小丽不 2020-05-21 …
某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为 2020-06-10 …
小刚数学测验考了95分,比小贝考试分数的8分之9还多5分小贝考了多少分?用方程解 2020-06-13 …
小强数学测验考了95分,小强比小丽的考试分数的八分之九还多五分,小丽考了多少分 2020-06-13 …
一次选拔考试共有8道题,做对第1.2.3.4.5.6.7.8道题的人分别占参阳选拔考试人数的85% 2020-06-18 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-06-29 …
甲乙两人参加测试,已知在备选的5题中,甲能答对其中的3题,乙答对每题的概率都为0.8.规定每次考试 2020-06-30 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-07-10 …