早教吧作业答案频道 -->数学-->
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f'(n)-f(n)=0RT
题目详情
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f ' (n)-f(n)=0
RT
RT
▼优质解答
答案和解析
设F(x)=f(x)/e^x,则F(a)=F(b)=0,所以存在n属于(a,b),使得F'(n)=[f'(n)-f(n)]/e^n=0,即原命题成立
看了设函数f(x)在[a,b]上连...的网友还看了以下:
一道数学题(没弄懂)罗尔中值定理:如果函数f(x)满足以下条件:①在闭区间[a,b]上连续,②在( 2020-04-06 …
f(x)在(a,b)内连续且可导,f(a)=f(b)=0.求证:在a,b之间存在一点m,使得f'( 2020-05-24 …
若x→0时limf(a+x)-f(a-x)/x存在且不为0,则f(x)在x=a处是否可导f(a)的 2020-07-16 …
罗尔定理能否作如下改变,若能,怎么证明?条件fx在[a,正无穷)上连续,在(a,正无穷)上可导,f 2020-07-16 …
f(x)在a,b二阶可导,f'(a)=f'(b)=0,证明存在m属于(a,b),使|f"(m)|> 2020-07-21 …
一道高数证明题设函数f(x)在[a,b]上可导,f(a)=f(b)=0,并存在一点c属于(a,b) 2020-08-01 …
求解一题证明题!高数设f(x)与g(x)在[a,b]上连续,在(a,b)上可导,f(a)=f(b) 2020-08-01 …
f(x)在闭区间[a,b]连续,在开区间(a,b)可导,f(a)=a,f(b)=b,证明存在ξ1, 2020-08-01 …
设f(a)在[ab]上连续,在(ab)内可导,且f(a)=f(b)=0则存在m属于(ab),使f`( 2020-11-03 …
关于微分中值定理F(x)在[0,a]上连续,在(0,a)上可导,f(a)=0.证明存在m属于(0,a 2020-12-12 …