早教吧作业答案频道 -->数学-->
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的x,y∈[a,b]有|f(x)-f(y)|≤k|x-y|,证明:(1).f(x)在[a,b]上连续;(2).存在ξ∈[a,b],使得f(ξ)=ξ;(3).若k∈[0,1),定义数列{xn}:x1∈[a
题目详情
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的x,y∈[a,b]有
|f(x)-f(y)|≤k|x-y|,证明:
(1).f(x)在[a,b]上连续;
(2).存在ξ∈[a,b],使得f(ξ)=ξ;
(3).若k∈[0,1),定义数列{xn}:x1∈[a,b],x(n+1)=f(xn),n=1,2,3,……则lim(n→无穷大)xn=ξ.
|f(x)-f(y)|≤k|x-y|,证明:
(1).f(x)在[a,b]上连续;
(2).存在ξ∈[a,b],使得f(ξ)=ξ;
(3).若k∈[0,1),定义数列{xn}:x1∈[a,b],x(n+1)=f(xn),n=1,2,3,……则lim(n→无穷大)xn=ξ.
▼优质解答
答案和解析
我为大一新生,做高数不容易啊,给分吧
(1)|f(x)-f(y)|≤k|x-y|
令y=X0,x趋向于X0(X0∈[a,b])
则k|x-y|趋向于0
因为|f(x)-f(y)|≥0
且lim|f(x)-f(y)|≤limk|x-y|=0,x趋向于X0,y=X0
由夹逼准则可知
当自变量变化很小时对应函数该变量也是无穷小,故连续
2)a≤f(x)≤b
f(a)-a≥0 f(b)-b≤0
故构造函数F(x)=f(x)-x由介值定理可知在[a,b]上必有一零点
f(ξ)-ξ=0
f(ξ)=ξ
3)|f(xn)-f(ξ)|≤k|xn-ξ|
|f(xn)-ξ|≤k|xn-ξ|
|x(n+1)-ξ|≤k|xn-ξ|【相当于xn与ξ的距离在缩小】
因为k∈[0,1),【k=0我就不讨论了】
当n→无穷大,xn与ξ的差趋向于无穷小
所以lim(n→无穷大)xn=ξ
(1)|f(x)-f(y)|≤k|x-y|
令y=X0,x趋向于X0(X0∈[a,b])
则k|x-y|趋向于0
因为|f(x)-f(y)|≥0
且lim|f(x)-f(y)|≤limk|x-y|=0,x趋向于X0,y=X0
由夹逼准则可知
当自变量变化很小时对应函数该变量也是无穷小,故连续
2)a≤f(x)≤b
f(a)-a≥0 f(b)-b≤0
故构造函数F(x)=f(x)-x由介值定理可知在[a,b]上必有一零点
f(ξ)-ξ=0
f(ξ)=ξ
3)|f(xn)-f(ξ)|≤k|xn-ξ|
|f(xn)-ξ|≤k|xn-ξ|
|x(n+1)-ξ|≤k|xn-ξ|【相当于xn与ξ的距离在缩小】
因为k∈[0,1),【k=0我就不讨论了】
当n→无穷大,xn与ξ的差趋向于无穷小
所以lim(n→无穷大)xn=ξ
看了 函数f(x)满足条件1.a≤...的网友还看了以下:
小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于 2020-04-26 …
锯子是谁发明的得到什么启发锯子是谁发明的?得到什么启发? 2020-04-27 …
几个同学一起计算数学开始平均分,如果小明的得分提高8分,则他们的平均分就达到90分;如果小明的得分 2020-05-13 …
小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于 2020-05-21 …
小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于 2020-05-21 …
甲丶乙两班进行篮球比赛丶己知甲班的张明比乙班的李亮多得到12分,李亮得分的两倍与张明的得分的差大于 2020-05-21 …
两名以上的申请人分别就同样的软件发明创造申请专利的,( )可取得专利权。 A.最先发明的人 B.最先 2020-05-26 …
有几位同学在计算考试的平均分.小明的得分如果再提高13分,他们的平均分就达到了90分;如果小明的得 2020-06-06 …
小明所在的班级共有50名同学,小明以42票当选为本学期的三好学生,求小明的得票率.再次对tmfza 2020-06-10 …
青年歌手大赛第一场比赛有12位歌手,其中11位歌手的平均分为85分,另一位歌手王明的得分比12位歌 2020-07-01 …