早教吧作业答案频道 -->数学-->
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的x,y∈[a,b]有|f(x)-f(y)|≤k|x-y|,证明:(1).f(x)在[a,b]上连续;(2).存在ξ∈[a,b],使得f(ξ)=ξ;(3).若k∈[0,1),定义数列{xn}:x1∈[a
题目详情
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的x,y∈[a,b]有
|f(x)-f(y)|≤k|x-y|,证明:
(1).f(x)在[a,b]上连续;
(2).存在ξ∈[a,b],使得f(ξ)=ξ;
(3).若k∈[0,1),定义数列{xn}:x1∈[a,b],x(n+1)=f(xn),n=1,2,3,……则lim(n→无穷大)xn=ξ.
|f(x)-f(y)|≤k|x-y|,证明:
(1).f(x)在[a,b]上连续;
(2).存在ξ∈[a,b],使得f(ξ)=ξ;
(3).若k∈[0,1),定义数列{xn}:x1∈[a,b],x(n+1)=f(xn),n=1,2,3,……则lim(n→无穷大)xn=ξ.
▼优质解答
答案和解析
我为大一新生,做高数不容易啊,给分吧
(1)|f(x)-f(y)|≤k|x-y|
令y=X0,x趋向于X0(X0∈[a,b])
则k|x-y|趋向于0
因为|f(x)-f(y)|≥0
且lim|f(x)-f(y)|≤limk|x-y|=0,x趋向于X0,y=X0
由夹逼准则可知
当自变量变化很小时对应函数该变量也是无穷小,故连续
2)a≤f(x)≤b
f(a)-a≥0 f(b)-b≤0
故构造函数F(x)=f(x)-x由介值定理可知在[a,b]上必有一零点
f(ξ)-ξ=0
f(ξ)=ξ
3)|f(xn)-f(ξ)|≤k|xn-ξ|
|f(xn)-ξ|≤k|xn-ξ|
|x(n+1)-ξ|≤k|xn-ξ|【相当于xn与ξ的距离在缩小】
因为k∈[0,1),【k=0我就不讨论了】
当n→无穷大,xn与ξ的差趋向于无穷小
所以lim(n→无穷大)xn=ξ
(1)|f(x)-f(y)|≤k|x-y|
令y=X0,x趋向于X0(X0∈[a,b])
则k|x-y|趋向于0
因为|f(x)-f(y)|≥0
且lim|f(x)-f(y)|≤limk|x-y|=0,x趋向于X0,y=X0
由夹逼准则可知
当自变量变化很小时对应函数该变量也是无穷小,故连续
2)a≤f(x)≤b
f(a)-a≥0 f(b)-b≤0
故构造函数F(x)=f(x)-x由介值定理可知在[a,b]上必有一零点
f(ξ)-ξ=0
f(ξ)=ξ
3)|f(xn)-f(ξ)|≤k|xn-ξ|
|f(xn)-ξ|≤k|xn-ξ|
|x(n+1)-ξ|≤k|xn-ξ|【相当于xn与ξ的距离在缩小】
因为k∈[0,1),【k=0我就不讨论了】
当n→无穷大,xn与ξ的差趋向于无穷小
所以lim(n→无穷大)xn=ξ
看了 函数f(x)满足条件1.a≤...的网友还看了以下:
集合A={x|x=(a^2-2a+1)/(a-1),a属于整数,a不等于1},……集合A={x|x 2020-05-13 …
求函数f(x)=x+a/x(a>0),x∈(0,+∞)的单调区间.点评一般结论:函数f(x)=ax 2020-06-08 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
不等式问题2已知A集合为(-2.3)B集合为(-4,2)C={x|(x-3a)(x-a)=0}试求 2020-07-30 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
1.已知集合A={x/x大于等于3小于7}B={x/x大于2小于10}求CR(A∪B),CR(A∩ 2020-07-30 …
已知集合A={x|2<x<4},B={x\(x-a)(x-3a)<0}(1)若A属于B,求a的取值 2020-07-31 …
设集合P={(x,y)|y=x^2-1,x∈R},Q={(x,y)|y=-2x^2+2∈R},则P 2020-08-01 …
1.已知全集U=R,集合A={X|X≤a-1},集合B={X|X>a+2},集合C={X|X<0或X 2020-12-02 …
①全集U={x|x≤5}集合A={x|-2<x<2}B={x|-3<x≤3}求补集U(A∩B)?②全 2021-02-05 …