早教吧作业答案频道 -->数学-->
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0有一段即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0存在ζ∈(0,1)使f(ζ)=0(这是一个常用结论)
题目详情
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。
我见有些题。Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。可以这样用。
有些题。这样用会被说是错的。请问为什么啊?
使f(ζ)=0
有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。
我见有些题。Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。可以这样用。
有些题。这样用会被说是错的。请问为什么啊?
▼优质解答
答案和解析
既然有答案原题我就不做了,直接说你问的吧:
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
-----------------------
因为f(x)在[0,1]上连续可微,f(x)=f(0)+f'(0)x+o(x)=f'(0)x+o(x)
f(1-x)=f(1)-f'(1)(1-x)+o(x)=-f'(1)(1-x)+o(x) (x->0)
于是f(x)*f(1-x)=-x(1-x)f'(0)f'(1)+o(x)0)
于是存在ζ∈(x,1-x)属于(0,1)使得f(ζ)=0
这是因为Limf’(x)/g’(x)不一定存在
比如f(x)=x+1,g(x)=x^2+1,则
Lim(x->0)f(x)/g(x)=1但是Lim(x->0)f'(x)/g'(x)=∞
如果Limf’(x)/g’(x)存在那么Limf(x)/g(x)=A→Limf’(x)/g’(x)=A
有些题直接用了可能是因为Limf’(x)/g’(x)的存在性比较显然.
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
-----------------------
因为f(x)在[0,1]上连续可微,f(x)=f(0)+f'(0)x+o(x)=f'(0)x+o(x)
f(1-x)=f(1)-f'(1)(1-x)+o(x)=-f'(1)(1-x)+o(x) (x->0)
于是f(x)*f(1-x)=-x(1-x)f'(0)f'(1)+o(x)0)
于是存在ζ∈(x,1-x)属于(0,1)使得f(ζ)=0
这是因为Limf’(x)/g’(x)不一定存在
比如f(x)=x+1,g(x)=x^2+1,则
Lim(x->0)f(x)/g(x)=1但是Lim(x->0)f'(x)/g'(x)=∞
如果Limf’(x)/g’(x)存在那么Limf(x)/g(x)=A→Limf’(x)/g’(x)=A
有些题直接用了可能是因为Limf’(x)/g’(x)的存在性比较显然.
看了 F(x)在[0,1]上二阶可...的网友还看了以下:
速算与巧算(2)959595*96-969696*95444…4(2005个4)/555…5(20 2020-04-07 …
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2 2020-05-12 …
设f(x,y)在(0,0)处连续,limx,y→0f(x,y)-1ex2+y2-1=4,则()A. 2020-05-14 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
某仪器有三个灯泡,烧坏第一、二、三个灯泡的概率分别是0.1,0.2,0.3,并且相互独立.当烧坏一 2020-06-13 …
某仪器有三个灯泡,烧坏第一、二、三个灯泡的概率分别是0.1,0.2,0.3,并且相互独立.当烧坏一 2020-06-13 …
用7、0、3、4、0、8、0、0这八个数字按要求组成八位数.读一个0的有:读两个0的有:读三个0的有 2020-11-18 …
用7、0、3、4、0、8、0、0这八个数字按要求组成八位数.读一个0的有:读两个0的有:读三个0的有 2020-11-18 …
△=0,△<0时一元二次方程ax2+bx+c=0(a>0)的根根需要用字母代表出来△>0,△=0,△ 2020-12-27 …