早教吧作业答案频道 -->数学-->
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0中.有一段即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0存在ζ∈(0,1)使f(ζ)=0(
题目详情
不定积分题和其他题.
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
▼优质解答
答案和解析
1:不妨设f'(0)>0,f’(1)>0.根据极限定义f'(0)=lim x->0 (f(x)-f(0))/(x-0)=lim x->0 f(x)/x>0,由于这里的x是(0,1)中趋于0的正数,故这里f(x)>0,这就是说在(0,1)中存在x1使得f(x1)>0.同样f'(1)=lim x->1 (f(x)-f(1))/(x-1)=lim x->1 f(x)/(x-1)>0,由于这里的x是(0,1)趋于1的数,所以(x-1)
看了 不定积分题和其他题.F(x)...的网友还看了以下:
证明:若f(x)在负无穷大到正无穷满足f(x)的导数=f(x)且f(0)=1,证明f(x)=e的x 2020-05-14 …
设函数f(x)=0,f是定义(0,+∞)在上的单调增函数,且满足f(x/y)=f(x)-f(y). 2020-05-16 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)| 2020-05-23 …
已知定义在R上恒不为0的函数y=f(x),当x>0时,满足f(x)>1,且对于任意的实数x,y都有 2020-06-02 …
高等数学介值定理证明题目设f(x)在[0,π/2]上的一阶导数连续,在(0,π/2)内二阶可导,且 2020-06-10 …
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)| 2020-07-27 …
设f(x)在x=0的某个领域U(0,m)内有定义设f(x)在x=0的某个邻域U(0,m)内有定义, 2020-07-31 …
设f(x)是定义在(0,正无穷大)上的非常函数(高一)对于任意的x>0,y>0,恒有f(xy)=f( 2020-12-07 …
如果函数f(x)的定义域为{x|x属于正实数},且f(x)为增函数,f(xy)=f(x)+f(y). 2020-12-08 …