早教吧作业答案频道 -->数学-->
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0中.有一段即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0存在ζ∈(0,1)使f(ζ)=0(
题目详情
不定积分题和其他题.
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
▼优质解答
答案和解析
1:不妨设f'(0)>0,f’(1)>0.根据极限定义f'(0)=lim x->0 (f(x)-f(0))/(x-0)=lim x->0 f(x)/x>0,由于这里的x是(0,1)中趋于0的正数,故这里f(x)>0,这就是说在(0,1)中存在x1使得f(x1)>0.同样f'(1)=lim x->1 (f(x)-f(1))/(x-1)=lim x->1 f(x)/(x-1)>0,由于这里的x是(0,1)趋于1的数,所以(x-1)
看了 不定积分题和其他题.F(x)...的网友还看了以下:
1.如果f(x)=(1/1+x^2)+x^2*∫^∧1∨0f(x)dx,求∫∧1∨0f(x)dx的 2020-04-13 …
f(x)=log2(1+bx/1+x)(b不等于0)为奇函数 1,求函数的单调区间 2,解不等式f 2020-05-14 …
glTranslatef();glScaled();glRotatef);参数意思glTransl 2020-05-22 …
设函数f(x)在x=0处连续,且limh→0f(h2)h2=1,则()A.f(0)=0且f−′(0 2020-06-16 …
高等数学积分问题(求爹爹跪奶奶)列7,设f(x)为连续函数,且f(x)=x+2∫1-0f(t)dt 2020-07-07 …
分段函数极限存在问题设f(x)=(ax+b)^1/3x>01x=03^1/xx<0,若limx→0 2020-07-18 …
设函数f(x)在x=0处连续,且limh→0f(h2)h2=1,则()A.f(0)=0且f−′(0 2020-07-20 …
大一微积分limx→0f(x)/x=1推出limx→0f(x)=0为什么? 2020-07-21 …
设F:{0,1}^n→{0,1}n个命题变项构成2^(2^n)个真值函数列出了表格pF(1)0F( 2020-07-26 …
若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为多少?若不等式x2+ 2020-07-31 …