早教吧作业答案频道 -->数学-->
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0中.有一段即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0存在ζ∈(0,1)使f(ζ)=0(
题目详情
不定积分题和其他题.
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
▼优质解答
答案和解析
1:不妨设f'(0)>0,f’(1)>0.根据极限定义f'(0)=lim x->0 (f(x)-f(0))/(x-0)=lim x->0 f(x)/x>0,由于这里的x是(0,1)中趋于0的正数,故这里f(x)>0,这就是说在(0,1)中存在x1使得f(x1)>0.同样f'(1)=lim x->1 (f(x)-f(1))/(x-1)=lim x->1 f(x)/(x-1)>0,由于这里的x是(0,1)趋于1的数,所以(x-1)
看了 不定积分题和其他题.F(x)...的网友还看了以下:
设f(x,y)在(0,0)处连续,limx,y→0f(x,y)-1ex2+y2-1=4,则()A. 2020-05-14 …
若实数x,y满足条件 x+y≥0 ; x-y+1≥0 ; 0≤x≤1 .则目标若实数x,y满足条件 2020-05-14 …
已知函数f(x)=+xlnx(m>0),g(x)=lnx-2.(1)当m=1时,求函数f(x)的单 2020-07-17 …
二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的x与y的部分对应值如下表:有下列结论: 2020-07-22 …
doublex=0;doubley=0;doublexd=-0.3146;doubleyd=0.2 2020-07-23 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
设随机变量(X,Y)的联合概率分布为P(X=0,Y=-1)=0.07P(X=0,Y=0)=0.18P 2020-10-31 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
[ln(x+e^x)]/x=lim(x->0)(1+e^x)/(x+e^x)怎么得到的?原题limx 2020-11-01 …
△=0,△<0时一元二次方程ax2+bx+c=0(a>0)的根根需要用字母代表出来△>0,△=0,△ 2020-12-27 …