早教吧作业答案频道 -->数学-->
f(x)在0,正无穷)上连续,在(0,正无穷)上可导并满足f(0)=0,f(x)>=0,f(x)=f'(x)求证f(x)恒等于0是14年复习全书135页的例4.11为什么对某正函数R(x),R(x)f(x)是单调不增的,就能证明f(x)是单调不增的
题目详情
f(x)在【0,正无穷)上连续,在(0,正无穷)上可导并满足f(0)=0,f(x)>=0,f(x)=f'(x) 求证f(x)恒等于0
是14年复习全书135页的例4.11
为什么对某正函数R(x),R(x)f(x)是单调不增的,就能证明f(x)是单调不增的啦
是14年复习全书135页的例4.11
为什么对某正函数R(x),R(x)f(x)是单调不增的,就能证明f(x)是单调不增的啦
▼优质解答
答案和解析
对一般的函数f(x),满足对某正函数R(x),R(x)f(x)单调不增,并不能证明f(x)单调不增.
反例如f(x) = 2^x,R(x) = 1/3^x.
这道题是因为有条件f(0) = 0,f(x) ≥ 0.
于是R(0)f(0) = 0,R(x)f(x) ≥ 0.
如果证明了R(x)f(x)单调不增,就有R(x)f(x) ≤ R(0)f(0) = 0,故R(x)f(x) = 0.
再由R(x) ≠ 0即得f(x) = 0,自然单调不增.
对这道题来说可以取R(x) = e^(-x),证明R(x)f(x)单调不增,答案想必也是这么做的吧.
反例如f(x) = 2^x,R(x) = 1/3^x.
这道题是因为有条件f(0) = 0,f(x) ≥ 0.
于是R(0)f(0) = 0,R(x)f(x) ≥ 0.
如果证明了R(x)f(x)单调不增,就有R(x)f(x) ≤ R(0)f(0) = 0,故R(x)f(x) = 0.
再由R(x) ≠ 0即得f(x) = 0,自然单调不增.
对这道题来说可以取R(x) = e^(-x),证明R(x)f(x)单调不增,答案想必也是这么做的吧.
看了 f(x)在0,正无穷)上连续...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
1.设2的X的4次方减去3的X的立方加上4X加5等于A括号X-1的4次方加上X减1的3次方加上C括 2020-05-13 …
已知f(0)=0,f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4|f''(x) 2020-05-17 …
函数与周期.f(x)是定义在R上的奇函数,且f(x+4)=f(x).当x属于(4,6]时,f(x) 2020-06-04 …
已知f(根号下x+4)=x+8根号下x,求f(x平方)由于:f(√x+4)=x+8√x则设:T=√ 2020-07-11 …
如图,双曲线y1=x分之1(x大于零),y2=x分之4(x大于零)点P为双曲线y2=x分之4上的点 2020-07-14 …
函数-已知函数f(x)=2mx22(4-m)x+1,g(x)=mx①若函数f(x)在x属于函数-已 2020-07-27 …
对任意a属于[-1,1]函数f(x)=x^2+(a-4)*x+2-a的值恒大于零,求x的取值范围这 2020-08-02 …
已知x分之一加上y加z分之一等于2分之一,y分之一加上z加x分之一等于3分之一,Z分之一加上x加y分 2020-10-31 …
4^x+4^(-x)-6*(2^x+2^-x)+10=0,求x的值怕大家看不懂,我念一遍.4的x次方 2020-11-01 …