早教吧作业答案频道 -->数学-->
二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)
题目详情
二次函数f(x)=ax2+2bx+1(a≠0).
(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;
(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.
(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;
(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.
▼优质解答
答案和解析
(1)由题意可得所有的(a,b)共有4×3=12个,根据f(x)在(-1,0)内有且只有一个零点,且f(0)=1,
故有f(-1)=a-2b+1<0,即 a<2b-1,故满足条件的(a,b)有(-2,0)、(-2,-1)、(-2,2)、
(-1,1)、(-1,2)、(2,2),共计6个,
∴所求事件的概率为
=
.
(2)若a∈(0,1),b∈(-1,1),函数f(x)在(-∞,-1)上为减函数,即-
≥-1,求得b≤a.
而所有的点(a,b)构成的区域为{(a,b)|0<a<1,且-1<b<1},如图所示:
故函数f(x)在(-∞,-1)上为减函数的概率为
=
=
.

故有f(-1)=a-2b+1<0,即 a<2b-1,故满足条件的(a,b)有(-2,0)、(-2,-1)、(-2,2)、
(-1,1)、(-1,2)、(2,2),共计6个,
∴所求事件的概率为
6 |
12 |
1 |
2 |
(2)若a∈(0,1),b∈(-1,1),函数f(x)在(-∞,-1)上为减函数,即-
2b |
2a |
而所有的点(a,b)构成的区域为{(a,b)|0<a<1,且-1<b<1},如图所示:
故函数f(x)在(-∞,-1)上为减函数的概率为
SOBCDE |
SABDE |
1×2−
| ||
1×2 |
3 |
4 |
看了 二次函数f(x)=ax2+2...的网友还看了以下:
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
已知f(0)=0,f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4|f''(x) 2020-05-17 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …