早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设集合A={x|x2-5x+4>0},B={x|x2-2ax+a+2=0},若A∩B≠∅,求a的取值范围.

题目详情
设集合A={x|x2-5x+4>0},B={x|x2-2ax+a+2=0},若A∩B≠∅,求a的取值范围.
▼优质解答
答案和解析
由集合A中的不等式变形得:(x-1)(x-4)>0,
解得:x>4或x<1,即A=(-∞,1)∪(4,+∞);
令f(x)=x2-2ax+a+2,
由A∩B≠∅,得f(x)与x轴无交点或两交点在区间[1,4]之间,
∴△=4a2-4(a+2)<0或
△=4a
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号