早教吧作业答案频道 -->数学-->
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续
题目详情
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续
▼优质解答
答案和解析
导数有个Darboux定理,说的是导数具有介值性质,也就是导数不具有第一类间断点.因此导数单调的话,不会有间断点,因为单调函数的间断点必是跳跃间断点.
看了设f(x)在(a,b)上可导,...的网友还看了以下:
两个可导函数乘积是否可导?为什么?例题:f(x)在a,b上连续,在(a,b)内可导,且f(a)=0 2020-05-14 …
求教一道微积分导数题目f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f( 2020-05-17 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
数学分析习题.设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b)设函数f(x)在[ 2020-07-16 …
导数证明题设函数f(x)在[-2,2]上连续,在(-2,2)内可导,且f(-2)=0,f(0)=2 2020-07-16 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …
设f(x)在[0,a]上连续,在(0,a)内可导,切f(0)=0,f'(x)单调增加(fx的倒数)证 2020-11-20 …
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f'(x)=g'(x),x属于(a,b 2020-12-23 …