早教吧作业答案频道 -->数学-->
已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.(1)若f(2)=3,求函数f(x)的表达式;(2)在(1)的条件下,设函数g(x)=f(x)-mx,若g(x)在区间[-2,2]上是单调函数,求实数m
题目详情
已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)-mx,若g(x)在区间[-2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[-1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)-mx,若g(x)在区间[-2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[-1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)由f(2)=3,可得4k+2(3+k)+3=3,∴k=-1
∴f(x)=-x2+2x+3;
(2)由(1)得g(x)=f(x)-mx=-x2+(2-m)x+3,函数的对称轴为x=
∵g(x)在区间[-2,2]上是单调函数,
∴
≤−2或
≥2
∴m≤-2或m≥6;
(3)f(x)=kx2+(3+k)x+3的对称轴为x=−
①k>0时,函数图象开口向上,x=−
<0,此时函数f(x)在[-1,4]上的最大值是f(4)=16k+(3+k)×4+3=20k+15=4,∴k=−
<0,不合题意,舍去;
②k<0时,函数图象开口向下,x=−
=−
−
>−
,
1°若−
<−
≤4,即k≤−
时,函数f(x)在[-1,4]上的最大值是f(−
)=
=4
∴k2+10k+9=0,∴k=-1或k=-9,符合题意;
2°若−
>4,即−
<k<0时,函数f(x)在[-1,4]上递增,最大值为f(4)=16k+(3+k)×4+3=20k+15=4,
∴k=−
<−
,不合题意,舍去;
综上,存在k使得函数f(x)在[-1,4]上的最大值是4,且k=-1或k=-9.
∴f(x)=-x2+2x+3;
(2)由(1)得g(x)=f(x)-mx=-x2+(2-m)x+3,函数的对称轴为x=
| 2−m |
| 2 |
∵g(x)在区间[-2,2]上是单调函数,
∴
| 2−m |
| 2 |
| 2−m |
| 2 |
∴m≤-2或m≥6;
(3)f(x)=kx2+(3+k)x+3的对称轴为x=−
| 3+k |
| 2k |
①k>0时,函数图象开口向上,x=−
| 3+k |
| 2k |
| 11 |
| 20 |
②k<0时,函数图象开口向下,x=−
| 3+k |
| 2k |
| 1 |
| 2 |
| 3 |
| 2k |
| 1 |
| 2 |
1°若−
| 1 |
| 2 |
| 3+k |
| 2k |
| 1 |
| 3 |
| 3+k |
| 2k |
| 12k−(k+3)2 |
| 4k |
∴k2+10k+9=0,∴k=-1或k=-9,符合题意;
2°若−
| 3+k |
| 2k |
| 1 |
| 3 |
∴k=−
| 11 |
| 20 |
| 1 |
| 3 |
综上,存在k使得函数f(x)在[-1,4]上的最大值是4,且k=-1或k=-9.
看了 已知函数f(x)=kx2+(...的网友还看了以下:
已知函数f(x)=xx−1.(1)用函数单调性定义证明f(x)=xx−1在(1,+∞)上是单调减函 2020-05-13 …
某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的4个结论,其中正确的结论是()A.函 2020-06-10 …
设f(x)在(-∞,+∞)内可导,且对任意x1、x2,当x1>x2时,都有f(x1)>f(x2), 2020-06-12 …
设函数f(x)是实数集R上的单调增函数,令F(x)=f(x)-f(2-x).(1)求证:F(x)在 2020-06-17 …
(2014•抚顺二模)设函数f(x)=x2-12x+b,则下列结论正确的是()A.函数f(x)在( 2020-07-14 …
已知函数f(x)=3xa-2x2+lnx,其中a为常数.(1)若a=1,求函数f(x)的单调区间; 2020-07-27 …
设f(x)是连续函数,F(x)是f(x)的原函数,则下列结论正确的是?A当f(x)是奇函数时,F( 2020-07-30 …
已知函数f(x)=ax2+4/x+c是奇函数,且f(1﹚=5(1)求f(x)的解析式(2)判断函数 2020-08-01 …
若函数f(x)满足下列两个性质:①f(x)在其定义域上是单调增函数或单调减函数;②在f(x)的定义域 2020-12-02 …
已知偶函数y=f(x)在区间[-1,0]上是增函数,且满足f(1-x)+f(1+x)=0,下列判断中 2020-12-24 …