早教吧作业答案频道 -->其他-->
(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q
题目详情

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.
▼优质解答
答案和解析
(1)将点A、点B的坐标代入可得:
,
解得:
;
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
=
,即
=
,
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
|
解得:
|
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
DQ |
DC |
DC |
PD |
m |
t+3 |
t+3 |
m+2 |
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
看了(2013•宿迁)如图,在平面...的网友还看了以下:
抛物线练习题(1)顶点在坐标原点,关于X轴对称,并且经过点M(5,-4)的抛物线的方程是?(2若抛 2020-05-12 …
如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线 2020-05-15 …
已知抛物线y=ax^2+bx+c,经过A(4,0)B(2,3)C(0,3)三点,(1)求抛物线的解 2020-05-15 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
已知抛物线y=ax2+bx+c经过A(1,0),B(3,0)C(0,3)三点.27.已知抛物线y= 2020-05-19 …
求二次函数关系式(急)(1)抛物线的顶点在原点(0.0),且过点(3,-27);(2)抛物线的顶点 2020-05-19 …
如图,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y轴交于点C,且OC 2020-06-12 …
如图,抛物线经过 A(-1,0)B(3,0)C(0,-3)三点 1.求抛物线的解析式和对称轴.如图 2020-06-27 …
在平面直角坐标中,抛物线y等于负x平方加2x加3,点A(负1,0)点P(2,3)和点Q都在抛物线上 2020-07-19 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …