早教吧作业答案频道 -->其他-->
(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q
题目详情

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.
▼优质解答
答案和解析
(1)将点A、点B的坐标代入可得:
,
解得:
;
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
=
,即
=
,
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
|
解得:
|
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
DQ |
DC |
DC |
PD |
m |
t+3 |
t+3 |
m+2 |
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
看了(2013•宿迁)如图,在平面...的网友还看了以下:
关于质点运动学一质点运动方程为r=2ti-3t*(t的平方)j(SI),求⑴t=2s时质点的速度和 2020-04-27 …
如图,在⊙O中,∠AOB=120°,PT与⊙O切于T点,A、B、P共线,∠APT的平分线依次交AT 2020-05-13 …
将矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.如图(15),在O 2020-05-16 …
已知直角坐标系中两点A(K,-2),B(2,T).求下列条件K,T的值,1,点A,B关于X的对称轴 2020-06-12 …
设直线L分别与X轴Y轴交与点AB,如果直线M:Y=KX+T(T大于0)与直线L平行且交X轴于C,求 2020-06-12 …
如图,在圆O中AB是直径,AT是经过点A的切线,弦CD垂直AB于P点,线段CP的中点为Q,连接BQ 2020-06-12 …
已知F(x)=x(-1/2),在点(a,f)的切线方程交横纵轴的于两点,与原点围成的三角形面积S= 2020-07-30 …
在四边形abcd中角dab等于角abc等于90度ad等于ab等于4,bc等于8,点n从a出发,沿a 2020-07-30 …
如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其 2020-07-31 …
在△ABC中,设向量AB=向量e1.向量AC=向量e2.设AT是角A的平分线(它与BC交于T点),将 2020-10-31 …