早教吧作业答案频道 -->其他-->
(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q
题目详情
(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.
▼优质解答
答案和解析
(1)将点A、点B的坐标代入可得:
,
解得:
;
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
=
,即
=
,
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
|
解得:
|
(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;
(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CPD,
∴
| DQ |
| DC |
| DC |
| PD |
| m |
| t+3 |
| t+3 |
| m+2 |
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
看了(2013•宿迁)如图,在平面...的网友还看了以下:
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
如图,直线y=x与y=-x+2交于点A,点P是直线OA上一动点(点A除外),作PQ∥x轴交直线y= 2020-06-14 …
如图,在直角坐标系xOy中,一直线y=2x+b经过点A(-1,0)与y轴正半轴交于B点,在x轴正半 2020-07-16 …
(2014•江干区一模)如图,抛物线与x轴相交于B、C两点,与y轴相交于点A,P(a,-a2+72 2020-07-26 …
如图,直线y=x与直线y=2x-1相交于点B,过B作BA⊥y轴于点A,点A关于点B的对称点为A1, 2020-07-31 …
如图所示,直线y=x与抛物线y=x2-x-3交于A,B两点,点P是抛物线上的一个动点,点P作PQ⊥ 2020-08-01 …
如图,抛物线y=-x2+6x与x轴交于O,A两点,与直线y=2x交于O,B两点.点P在线段OA上以 2020-08-02 …
如图①,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(4,0)、B(0,2)两点.第一、三象 2020-08-03 …
如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C( 2020-10-31 …
已知抛物线Y=ax2-2x+c与它的对称轴相较于点A(1,-4),与Y轴相交于C,与Y轴正半轴交于B 2021-01-10 …