早教吧作业答案频道 -->数学-->
数学高考题.对于n∈N*,将n表示为n=a0×2^k+a1×2^k-1+a2×2^k-2+……ak-1×2+ak×2^0.a0=1,当1≤i≤k时,ai记为0或1.记I(n)为上述表示中ai为0的个数,(例如1=1×2^0,4=1×2^2+0×2^1+0×2^0,故I(1)=0,I(4)=2)则:I(12
题目详情
数学高考题.
对于n∈N*,将n表示为
n=a0×2^k+a1×2^k-1+a2×2^k-2+……ak-1×2+ak×2^0.a0=1,当1≤i≤k时,ai记为0或1.记I(n)为上述表示中ai为0的个数,(例如1=1×2^0,4=1×2^2+0×2^1+0×2^0,故I(1)=0,I(4)=2)则:I(12)= 127∑ 2^I(n)= n=1
对于n∈N*,将n表示为
n=a0×2^k+a1×2^k-1+a2×2^k-2+……ak-1×2+ak×2^0.a0=1,当1≤i≤k时,ai记为0或1.记I(n)为上述表示中ai为0的个数,(例如1=1×2^0,4=1×2^2+0×2^1+0×2^0,故I(1)=0,I(4)=2)则:I(12)= 127∑ 2^I(n)= n=1
▼优质解答
答案和解析
(1)根据题意,12=1×23+1×22+0×21+0×20,则I(12)=2;
(2)127=1×26+1×25+1×24+1×23+1×22+1×21+1×20,
设64≤n≤126,且n为整数;
则n=1×26+a1×25+a2×24+a3×23+a4×22+a5×21+a6×20,
a1,a2,a3,a4,a5,a6中6个数都为0或1,其中没有一个为1时,有C60种情况,即有C60个I(n)=5;
其中有一个为1时,有C60种情况,即有C60个I(n)=5;
其中有2个为1时,有C62种情况,即有C62个I(n)=4;
…
∑n=641272I(n)=C6026+C61×25+C62×24+C63×23+C64×22+C65×2+1=(2+1)n=36,
同理可得: ∑n=32632I(n)=35,
…
∑n=232I(n)=31,
2I(1)=1;
则 ∑n=11272I(n)=1+3+32+…+36= 37-13-1=1093;
(2)127=1×26+1×25+1×24+1×23+1×22+1×21+1×20,
设64≤n≤126,且n为整数;
则n=1×26+a1×25+a2×24+a3×23+a4×22+a5×21+a6×20,
a1,a2,a3,a4,a5,a6中6个数都为0或1,其中没有一个为1时,有C60种情况,即有C60个I(n)=5;
其中有一个为1时,有C60种情况,即有C60个I(n)=5;
其中有2个为1时,有C62种情况,即有C62个I(n)=4;
…
∑n=641272I(n)=C6026+C61×25+C62×24+C63×23+C64×22+C65×2+1=(2+1)n=36,
同理可得: ∑n=32632I(n)=35,
…
∑n=232I(n)=31,
2I(1)=1;
则 ∑n=11272I(n)=1+3+32+…+36= 37-13-1=1093;
看了数学高考题.对于n∈N*,将n...的网友还看了以下:
matlab求解微分方程组dy(1)/dt=(e12-y(1)/c13)/r6-A0*y(3)/I 2020-05-16 …
(1+x)+(1+x)^2+(1+x)^3+………+(1+x)^n=A0+A1x+...A(n-1 2020-05-17 …
已知K(xa-x2)^2≤(x1-x2)(f(x1)-f(x2))和∣f(x1)-f(x2)∣≤∣ 2020-05-17 …
(2004•苏州)已知A=A0(1+mt)(m、A、A0均不为0),则t=()A.A0−AmAB. 2020-05-17 …
1.已知a,b,c是正有理数.求证:a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^ 2020-06-12 …
平面向量.题“设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a 2020-07-09 …
已知满足x^2–(1+a)x+a0,求实数a的取值范围. 2020-07-09 …
若向量a0是单位向量,则()A→B→a0与y轴平行a0与x轴平行C→=1D→=1a0|a0|求步骤 2020-07-09 …
已知(2x-1)³=a₃x³+a₂x²+a₁x+a0,请你想办法求出a₃+a₂+a1+a0的值注: 2020-07-09 …
求解数学题(二项式定理):设数列A0,A1,A2,...满足A0与A1不相等,A(i-1)+A(i+ 2020-11-01 …