早教吧作业答案频道 -->数学-->
高等数学证明题设函数f(x)在区间[a,b]上连续,A,B为两个常数,且AB>0,证明对任意x1,x2{x1,x2在区间[a,b]},都存在ξ{ξ在区间[a,b]},使f(ξ)=[Af(x1)+Bf(x2)]/(A+B)
题目详情
高等数学证明题
设函数f(x)在区间[a,b]上连续,A,B为两个常数,且AB>0,证明对任意x1,x2{x1,x2在区间[a,b]},都存在ξ {ξ在区间[a,b]},使f(ξ)=[Af(x1)+Bf(x2)]/(A+B)
设函数f(x)在区间[a,b]上连续,A,B为两个常数,且AB>0,证明对任意x1,x2{x1,x2在区间[a,b]},都存在ξ {ξ在区间[a,b]},使f(ξ)=[Af(x1)+Bf(x2)]/(A+B)
▼优质解答
答案和解析
令A/(A+B)=λ则B/(A+B)=1-λ,0≤λ≤1在闭区间[x1,x2](或[x2,x1])上不妨设f(x1)≤f(x2),则f(x1)≤λf(x1)+(1-λ)f(x2)≤f(x2),f(x)在[a,b]上连续在[x1,x2](或[x2,x1])上也连续,由介值性定理知存在ξ属于[x1,x2](或[x2,x1])当然也属于[a,b],使得f(ξ)=λf(x1)+(1-λ)f(x2)得证.
看了高等数学证明题设函数f(x)在...的网友还看了以下:
对于函数f(x)与g(x),若存在区间[m,n](m<n),使得f(x)与g(x)在区间[m,n] 2020-06-08 …
设a∈R,函数f(x)=x|x-a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大 2020-07-16 …
设有微分方程y'-2y=f(x),其中当x1时f(x)=0,求在R内连续函数y=y(x),使在(负 2020-07-31 …
已知幂函数f(x)=x^(m^2-2m-3)(m∈Z)为偶函数且在区间(0,+∞)上增函数,.(看 2020-08-01 …
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x)>0.若极限limx 2020-08-01 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …
(1)已知y=log以a为底(2-ax)的对数在闭区间0到1上是关于x的减函数,则a的取值范围.( 2020-08-01 …
我有几个数学题,有没有高手帮忙解答呀1.设函数f(x),g(x)在[a,b]上连续,且在[a,b]区 2020-10-30 …
(2010•黄浦区一模)已知a、b∈R,向量e1=(x,1),e2=(-1,b-x),函数f(x)= 2020-10-31 …
函数f(x)在D内单调递增或单调递减2,如果存在区间[a,b]包含D,使函数f(x)在区间[a,b] 2020-12-08 …