早教吧作业答案频道 -->数学-->
如图1,直线y=-2x+4交x轴、y轴于A、B两点,交双曲线y=kx(x<0)于C点,△AOC的面积为6.(1)求双曲线的解析式.(2)如图2,D为双曲线y=kx(x<0)上一点,连结CD,将线段CD绕点D顺时针旋转
题目详情
如图1,直线y=-2x+4交x轴、y轴于A、B两点,交双曲线y=
(x<0)于C点,△AOC的面积为6.
(1)求双曲线的解析式.
(2)如图2,D为双曲线y=
(x<0)上一点,连结CD,将线段CD绕点D顺时针旋转90°得线段DE,点E恰好落在x轴上,求点E的坐标.

k |
x |
(1)求双曲线的解析式.
(2)如图2,D为双曲线y=
k |
x |

▼优质解答
答案和解析
(1)过C作CH⊥x轴于H,
直线y=-2x+4中,令y=0,则x=2,
∴A(2,0),即AO=2,
∵△AOC的面积为6,
∴
×AO×CH=6,
∴
×2×CH=6,
∴CH=6,即点C的纵坐标为6,
直线y=-2x+4中,当y=6时,6=-2x+4,
解得x=-1,
∴C(-1,6),
代入y=
(x<0)可得,k=-1×6=-6,
∴双曲线的解析式为y=-
;
(2)过点D作DF⊥x轴于F,过C作CG⊥DF于G,则∠G=∠DFE=90°,
由旋转可得,CD=DE,∠CDE=90°,
∴∠CDG=∠DEF,
在△DCG和△EDF中,
,
∴△DCG≌△EDF(AAS),
∴CG=DF,DG=EF,
设D(a,-
),则DF=-
,FO=-a,
∵C(-1,6),
∴CG=-1-a,
∴DF=-1-a,
∴-
=-1-a,
解得a=-3或a=2(舍去),
∴DF=-1+3=2,DG=GF-DF=6-2=4,
∴EF=4,
又∵FO=3,
∴OE=4-3=1,
∴E(1,0).

直线y=-2x+4中,令y=0,则x=2,
∴A(2,0),即AO=2,
∵△AOC的面积为6,
∴
1 |
2 |
∴
1 |
2 |
∴CH=6,即点C的纵坐标为6,
直线y=-2x+4中,当y=6时,6=-2x+4,
解得x=-1,
∴C(-1,6),
代入y=
k |
x |
∴双曲线的解析式为y=-
6 |
x |
(2)过点D作DF⊥x轴于F,过C作CG⊥DF于G,则∠G=∠DFE=90°,
由旋转可得,CD=DE,∠CDE=90°,

∴∠CDG=∠DEF,
在△DCG和△EDF中,
|
∴△DCG≌△EDF(AAS),
∴CG=DF,DG=EF,
设D(a,-
6 |
a |
6 |
a |
∵C(-1,6),
∴CG=-1-a,
∴DF=-1-a,
∴-
6 |
a |
解得a=-3或a=2(舍去),
∴DF=-1+3=2,DG=GF-DF=6-2=4,
∴EF=4,
又∵FO=3,
∴OE=4-3=1,
∴E(1,0).
看了如图1,直线y=-2x+4交x...的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-根号x的图像分别交直线x=1于点A,B, 2020-04-05 …
抛物线顶点在原点它的准线过双曲线x^2/a^2-y^2/b^=1的一个焦点,并于双曲线的实轴垂直, 2020-04-08 …
已知,,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以,为焦点的 2020-05-15 …
回答下列以下有关酶的问题:(1)由图1曲线可知:当pH从5上升到7,酶活性的变化过程是;从图示曲线 2020-06-20 …
已只直线y=1/2x与双曲线y=k/x(k>0)交A,B2点,且A的横坐标为4求1k的值2若双曲线 2020-07-12 …
1双曲线的一个焦点为F过F作垂直于实轴的直线交双曲线于AB两点若以AB为直径的圆恰好过双曲线的一个 2020-07-30 …
(本题15分)已知曲线与曲线,设点是曲线上任意一点,直线与曲线交于、两点.(1)判断直线与曲线的位 2020-07-31 …
已知双曲线Γ:x2a2-y2b2=1(a>0,b>0)的左焦点为F,以原点为圆心,OF为半径的圆分 2020-08-01 …
已知直线l的参数方程为x=12ty=1+32t(t为参数),曲线C的极坐标方程为ρ=22sin(θ 2020-08-02 …
直线l:y=kx+1与双曲线C:2x2-y2=1.(1)若直线与双曲线有且仅有一个公共点,求实数k的 2020-12-31 …