早教吧作业答案频道 -->数学-->
如图1,直线y=-2x+4交x轴、y轴于A、B两点,交双曲线y=kx(x<0)于C点,△AOC的面积为6.(1)求双曲线的解析式.(2)如图2,D为双曲线y=kx(x<0)上一点,连结CD,将线段CD绕点D顺时针旋转
题目详情
如图1,直线y=-2x+4交x轴、y轴于A、B两点,交双曲线y=
(x<0)于C点,△AOC的面积为6.
(1)求双曲线的解析式.
(2)如图2,D为双曲线y=
(x<0)上一点,连结CD,将线段CD绕点D顺时针旋转90°得线段DE,点E恰好落在x轴上,求点E的坐标.

k |
x |
(1)求双曲线的解析式.
(2)如图2,D为双曲线y=
k |
x |

▼优质解答
答案和解析
(1)过C作CH⊥x轴于H,
直线y=-2x+4中,令y=0,则x=2,
∴A(2,0),即AO=2,
∵△AOC的面积为6,
∴
×AO×CH=6,
∴
×2×CH=6,
∴CH=6,即点C的纵坐标为6,
直线y=-2x+4中,当y=6时,6=-2x+4,
解得x=-1,
∴C(-1,6),
代入y=
(x<0)可得,k=-1×6=-6,
∴双曲线的解析式为y=-
;
(2)过点D作DF⊥x轴于F,过C作CG⊥DF于G,则∠G=∠DFE=90°,
由旋转可得,CD=DE,∠CDE=90°,
∴∠CDG=∠DEF,
在△DCG和△EDF中,
,
∴△DCG≌△EDF(AAS),
∴CG=DF,DG=EF,
设D(a,-
),则DF=-
,FO=-a,
∵C(-1,6),
∴CG=-1-a,
∴DF=-1-a,
∴-
=-1-a,
解得a=-3或a=2(舍去),
∴DF=-1+3=2,DG=GF-DF=6-2=4,
∴EF=4,
又∵FO=3,
∴OE=4-3=1,
∴E(1,0).

直线y=-2x+4中,令y=0,则x=2,
∴A(2,0),即AO=2,
∵△AOC的面积为6,
∴
1 |
2 |
∴
1 |
2 |
∴CH=6,即点C的纵坐标为6,
直线y=-2x+4中,当y=6时,6=-2x+4,
解得x=-1,
∴C(-1,6),
代入y=
k |
x |
∴双曲线的解析式为y=-
6 |
x |
(2)过点D作DF⊥x轴于F,过C作CG⊥DF于G,则∠G=∠DFE=90°,
由旋转可得,CD=DE,∠CDE=90°,

∴∠CDG=∠DEF,
在△DCG和△EDF中,
|
∴△DCG≌△EDF(AAS),
∴CG=DF,DG=EF,
设D(a,-
6 |
a |
6 |
a |
∵C(-1,6),
∴CG=-1-a,
∴DF=-1-a,
∴-
6 |
a |
解得a=-3或a=2(舍去),
∴DF=-1+3=2,DG=GF-DF=6-2=4,
∴EF=4,
又∵FO=3,
∴OE=4-3=1,
∴E(1,0).
看了如图1,直线y=-2x+4交x...的网友还看了以下:
证明空间中的四点A,B,C,D共面的充分必要条件是它们所对应的位置向量a,b,c,d满足(d,b, 2020-05-13 …
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
如图,已知点A(-m,n),B(0,m),且m、n满足m+5+(n-5)2=0,点C在y轴上,将△ 2020-06-14 …
如图,三角形AOC与三角形均为等边三角形,点A,D在双曲线y=x分之根号3(x大于0),点O为坐标 2020-06-16 …
如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB 2020-07-06 …
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF 2020-07-13 …
在平面直角坐标系xOy中,抛物线y=12x2-x+2与y轴交于点A,顶点为点B,点C与点A关于抛物 2020-07-26 …
如图,在平面直角坐标系中,点A(0,a),点B(b,0),点D(d,0),其中a、b、d满足|a-3 2020-11-03 …
(1)如图1,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D 2021-01-08 …
函数y=f(x)在x=a点连续是f(x)在点x=a点有极限的什么条件,详见下:函数y=f(x)在x= 2021-02-13 …