早教吧作业答案频道 -->数学-->
设f(x)有一阶连续导数,f(0)=0,f′(0)≠0,F(x)=∫x0(x2−t2)f(t)dt.当x→0时F′(x)与xk为同阶无穷小,求常数k.
题目详情
设f(x)有一阶连续导数,f(0)=0,f′(0)≠0,F(x)=
(x2−t2)f(t)dt.当x→0时F′(x)与xk为同阶无穷小,求常数k.
∫ | x 0 |
▼优质解答
答案和解析
因为F(x)=∫x0(x2−t2)f(t)dt=x2∫x0f(t)dt-∫x0t2f(t)dt,利用积分上限函数的求导公式可得,F′(x)=2x∫x0f(t)dt+x2f(x)−x2f(x)=2x∫x0f(t)dt.因为f(x)有一阶连续导数,f(0)=0,f′(0)≠0,所以f(x...
看了 设f(x)有一阶连续导数,f...的网友还看了以下:
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知f(x)=log2[(x+2)],且f(0),f(2),f(6)成等差数列若a,b,c是互不相 2020-06-13 …
求解一道高数证明题设f(x)在(0,1)上连续,在(0,1)内二阶可导,且f(0)=f(1)=0, 2020-06-13 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
导数的连续性设f(x)可导,且f(0)=0,f(x)在0点的导数不为0,求w=lim(x→0){x 2020-07-16 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
利用Roll定理构造函数设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1 2020-11-02 …