早教吧作业答案频道 -->数学-->
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3f(3)=1,试证必存在a属于(0,3),使f'(a)=0f(3)=1阿
题目详情
函数 f(0)+f(1)+f(2)=3 f(3)=1 证明f'(x)=0
设函数f(x)在[0,3]上连续,在(0,3)内可导,且 f(0)+f(1)+f(2)=3 f(3)=1,试证必存在a属于(0,3),使f'(a)=0
f(3)=1阿
设函数f(x)在[0,3]上连续,在(0,3)内可导,且 f(0)+f(1)+f(2)=3 f(3)=1,试证必存在a属于(0,3),使f'(a)=0
f(3)=1阿
▼优质解答
答案和解析
f(3)=1/3
f(0)+f(1)+f(2)=1 所以f(0)f(1) f(2)中必然有一个小于等于1/3 另一个大于等于1/3 设这两个数是x和y 因为函数连续 则xy之间必然有z使函数值f(z)等于1/3,此时f(x)在[z,3]满足Roll定理,因此存在a属于(0,3),使f'(a)=0
f(0)+f(1)+f(2)=1 所以f(0)f(1) f(2)中必然有一个小于等于1/3 另一个大于等于1/3 设这两个数是x和y 因为函数连续 则xy之间必然有z使函数值f(z)等于1/3,此时f(x)在[z,3]满足Roll定理,因此存在a属于(0,3),使f'(a)=0
看了 函数f(0)+f(1)+f(...的网友还看了以下:
设函数f(x,y)在点(a,b)处的偏导数存在,则limx→0f(a+x,b)?f(a?x,b)x 2020-05-17 …
f表示一种新运算,f(1)=0f(2)=1f(3)=2f(4)=3f(½)=2f(1/3)=3f( 2020-06-03 …
已知f(0)=0f'(0)=2则lim(x→0)f(2x)/x=已知f(0)=0f'(0)=2则l 2020-06-04 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
分析并写出下面程序的输入输出的形式#includeMain(){Floata,b,c,r;Scan 2020-07-23 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
1.研究函数f(x)=大括号里三个式子f(x)=x^2-2x+5x大于0f(x)=0x等于0f(x) 2020-12-08 …