早教吧作业答案频道 -->数学-->
△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B.C重合),△ADE是以AD为边
题目详情
△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B.C重合),△ADE是以AD为边
▼优质解答
答案和解析
⑴
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠DAE=∠BAC=60°
∴∠DAE-∠BAD=∠BAC-∠BAD
即∠BAE=∠CAD
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形,理由如下:
由上得:△AEB≌△ADC
∴∠ABE=∠C=60°
又∠BAC=∠C=60°
∴∠ABE=∠BAC
∴BE∥CF
又EF∥BC
∴四边形BCEF是平行四边形
⑵
⑴中的结论仍成立,理由如下:
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠BAC=∠DAE=60°
∴∠BAC-∠EAF=∠DAE-∠EAF
即∠BAE=∠DAC
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形
由△AEB≌△ADC得:
∠ABE=∠ACD
而∠ACD=180°-∠ACB=120°
∴∠ABE=∠ABC+∠CBE=60°+∠CBE=120°
∴∠CBE=60°
∵∠DCF=∠ACB=60°(对顶角相等)
∴∠DCF=∠CBE
∴CF∥BE
又BC∥EF
∴四边形BCEF是平行四边形
⑶
当CD=CB时,四边形BCEF是菱形,理由如下:
由△AEB≌△ADC得:
BE=CD
又CD=CB
∴BE=CB
由上知:四边形BCEF是平行四边形
∴四边形BCEF是菱形
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠DAE=∠BAC=60°
∴∠DAE-∠BAD=∠BAC-∠BAD
即∠BAE=∠CAD
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形,理由如下:
由上得:△AEB≌△ADC
∴∠ABE=∠C=60°
又∠BAC=∠C=60°
∴∠ABE=∠BAC
∴BE∥CF
又EF∥BC
∴四边形BCEF是平行四边形
⑵
⑴中的结论仍成立,理由如下:
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠BAC=∠DAE=60°
∴∠BAC-∠EAF=∠DAE-∠EAF
即∠BAE=∠DAC
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形
由△AEB≌△ADC得:
∠ABE=∠ACD
而∠ACD=180°-∠ACB=120°
∴∠ABE=∠ABC+∠CBE=60°+∠CBE=120°
∴∠CBE=60°
∵∠DCF=∠ACB=60°(对顶角相等)
∴∠DCF=∠CBE
∴CF∥BE
又BC∥EF
∴四边形BCEF是平行四边形
⑶
当CD=CB时,四边形BCEF是菱形,理由如下:
由△AEB≌△ADC得:
BE=CD
又CD=CB
∴BE=CB
由上知:四边形BCEF是平行四边形
∴四边形BCEF是菱形
看了 △ABC是等边三角形,点D是...的网友还看了以下:
(2004•重庆)设p>0是一常数,过点Q(2p,0)的直线与抛物线y2=2px交于相异两点A、B 2020-05-13 …
如图①,在矩形 ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A、B、C、D路线运动, 2020-05-16 …
如图,P是线段AB上一动点,沿A→B→A以lcm/s的速度往返运动1次,C是线段BP的中点,AB= 2020-07-11 …
已知椭圆M:x24+y23=1,点F1,C分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴 2020-07-17 …
已知直线AB平行于直线y=-3分之根号三x,且与y轴交于点B(0,1),与x轴交于点A,以线段AB 2020-08-01 …
如图在平面直角坐标系xOy中点A的坐标为(a,0),点B的坐标为(0,b),其中a>0,b>0,以 2020-08-01 …
向量a=e1+2e2,向量b=3e1-4e2,且e1e2共线,则向量a与b?A共线B不共线C可能共线 2020-10-31 …
已知,直线y=-33x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△A 2020-12-23 …
如图,在平面直角坐标系中,点A(-6,0)、点C(0,4),四边形OABC是矩形,以点O为圆心的⊙O 2020-12-25 …
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx 2021-01-11 …