早教吧作业答案频道 -->其他-->
将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”(1)证明:BC⊥CE;(2)如图②,连结BE,取BE中点F,连结AF、CF、DF
题目详情

(1)证明:BC⊥CE;
(2)如图②,连结BE,取BE中点F,连结AF、CF、DF,试判断并证明△AFD的形状.
▼优质解答
答案和解析
(1)证明:∵△ABC≌△DCE,∠A=∠D=90°,
∴∠B=∠DCE,∠ACB+∠B=90°,
∴∠ACB+∠DCE=90°,
∴∠BCE=180°-90°=90°,
∴BC⊥CE.
(2)△AFD是等腰直角三角形,
理由是:延长AF交DE延长线于M,
∵∠BAC=∠CDE=90°,
∴∠BAC+∠CDE=180°
∴AB∥DE,
∴△ABF∽△MEF,
∴
=
=
,
∵F为BE中点,
∴BF=EF,
∴AB=EM,AF=FM,
∵△ABC≌△DCE,
∴AC=DE,DC=AB=EM,
∴AD=DM,
∵∠ADM=90°,
∴DF⊥AM,DF=AF=FM,
即△AFD是等腰直角三角形.
∴∠B=∠DCE,∠ACB+∠B=90°,
∴∠ACB+∠DCE=90°,
∴∠BCE=180°-90°=90°,
∴BC⊥CE.

(2)△AFD是等腰直角三角形,
理由是:延长AF交DE延长线于M,
∵∠BAC=∠CDE=90°,
∴∠BAC+∠CDE=180°
∴AB∥DE,
∴△ABF∽△MEF,
∴
AB |
EM |
BF |
EF |
AF |
FM |
∵F为BE中点,
∴BF=EF,
∴AB=EM,AF=FM,
∵△ABC≌△DCE,
∴AC=DE,DC=AB=EM,
∴AD=DM,
∵∠ADM=90°,
∴DF⊥AM,DF=AF=FM,
即△AFD是等腰直角三角形.
看了 将两个全等的直角三角形(△A...的网友还看了以下:
(2012山东数学)((22)已知函数f(x)=(lnx+k)/e^x(k为常数,e=2.7(201 2020-03-30 …
在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE垂直BC,垂足为E,连结DE交AC于点P 2020-05-16 …
已知矩形OABC的一边OA在x轴上,OC在y轴上,O为坐标原点;连结OB;双曲线y=k/x交BC与 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
已知:RtΔABC中,∠A为直角,AD⊥BC于D,在线段AD反向延长线上取一点E,连接BE,并作C 2020-06-06 …
如图,直线l和双曲线y=k/x(k>0)交于A、B两点,p是线段AB上的一点(不与点A、B重合). 2020-07-26 …
如图,直线y=-x+6交x轴、y轴于A、B两点,p为A点右侧x轴上的一动点,以p为直角顶点、BP为 2020-07-26 …
正方形ABCD中,点E是射线BC上一动点,射线AE交BD于H.将射线AE绕A点逆时针旋转45°,交直 2021-02-04 …
如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线分别交AB、CD、BD于 2021-02-04 …
初三几何综合在RT△ABC中,∠ACB=90°,tan∠BAC=1/2,点D在边AC上,不与A,C重 2021-02-04 …