早教吧作业答案频道 -->数学-->
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数网上偶遇解答如下:首先F(x)=e^x+e^-x则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]=e^(n+1)+
题目详情
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
▼优质解答
答案和解析
F(1) F(n) >e^(n+1)+2
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
看了 f(x)=e^x-kx,设函...的网友还看了以下:
设函数f(x)在x=a处二阶可导,又limf'(x)/(x-a)=-1,则()A.x=a是f(x设函 2020-03-31 …
设函数f(x)=(2^x)/(1+2^x)-1/2,[x]表示不超过x的最大整数,则函数y=[f( 2020-04-27 …
设函数f(x)=x^2+x+1/2的定义域为【n,n+1](n∈正整数),则在f(x)的值域中,整 2020-05-16 …
若f(n)为n的平方+1(n是任意正整数)的各位数字之和,如14的平方+1=197,1+9+7=1 2020-05-17 …
乱七八糟的数学题(第二辑)1.设x^6-x^5-17x^4+5x^3+64x^2-4x-48=(x 2020-05-23 …
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上()A.当f 2020-07-20 …
已知函数f(n)=log以(n+1)为底的(n+2)的对数(n为正整数)满足f(1)*f(2)*f 2020-07-24 …
关于同余的1.设f(x)是一个整奇数非零多项式,且a≡b(modm),则f(a)≡f(b)(mod 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
2011湖南数学高考题(文)给定k属于正整数,设函数f:正整数→正整数满足:对于任意大于k的正整数n 2020-11-19 …