早教吧作业答案频道 -->数学-->
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数网上偶遇解答如下:首先F(x)=e^x+e^-x则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]=e^(n+1)+
题目详情
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
▼优质解答
答案和解析
F(1) F(n) >e^(n+1)+2
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
看了 f(x)=e^x-kx,设函...的网友还看了以下:
用定义证明函数f(x)=(1\e^x-1)+(1\2)是奇函数急吖借问下2楼的解法f(-x)=1/ 2020-05-13 …
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
五元一次方程的解法0.01349/[e+0.6842(1-e)]=a0.8638/[e+0.565 2020-07-16 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
求函数y=(e^x-1)/(e^x+1)的值域?!~网上某个人的回答e^x-1=y(e^x+1)e^ 2020-10-31 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …