早教吧作业答案频道 -->数学-->
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数网上偶遇解答如下:首先F(x)=e^x+e^-x则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]=e^(n+1)+
题目详情
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
▼优质解答
答案和解析
F(1) F(n) >e^(n+1)+2
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
看了 f(x)=e^x-kx,设函...的网友还看了以下:
希望能给点解题的过程1,若y=xˆ3+sinx ,则y'' 2,已知 xy-eˆx+eˆy =0, 2020-05-17 …
快帮我解此数学相遇问题(解后重金答谢)甲乙二人从A,B两地相向而行.甲行了600米与乙相遇,相遇后 2020-05-20 …
急求一组整数方程的解.最好所有解.100a+50b+20c+10d+5e+f=2888;a+b+c 2020-06-09 …
高中求自然对数的导数函数Y=x*e^x的导数Y'=e^x+x*e^x求解题思路, 2020-06-10 …
若关于x的方程(x-2)2ex+ae-x=2a|x-2|(e为自然对数的底数)有且仅有6个不等的实 2020-07-20 …
设f(x)=(x-2)2ex+ae-x,g(x)=2a|x-2|(e为自然对数的底数),若关于x方 2020-08-02 …
设指数函数时,常设为y=ae^bx,其中,e代表什么?为什么用e?(解出来之后,a与b都变成了常数 2020-08-02 …
我在学习高等数学中遇到了一句话,复合函数的某些中间变量本身又是复合函数的自变量,该怎么理解,请举我 2020-08-02 …
设函数f(x)=lnxx,关于x的方程[f(x)]2+mf(x)-1=0有三个不同的实数解,则实数m 2020-10-31 …
1.函数U=y^(z/x)的全微分dU(y>0)=2.函数y=e^(x/2)展开成X的幂级数为求大侠 2020-12-08 …