早教吧作业答案频道 -->数学-->
已知函数f(x)=ex-x-1(e是自然对数的底数).(1)求证:ex≥x+1;(2)若不等式f(x)>ax-1在x∈[12,2]上恒成立,求正数a的取值范围.
题目详情
已知函数f(x)=ex-x-1(e是自然对数的底数).
(1)求证:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[
,2]上恒成立,求正数a的取值范围.
(1)求证:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[
1 |
2 |
▼优质解答
答案和解析
(本小题满分12分)
证明:(1)由题意知,要证ex≥x+1,只需证f(x)=ex-x-1≥0,
求导得f′(x)=ex-1,当x∈(0,+∞)时,f′(x)=ex-1>0,
当x∈(-∞,0)时,f′(x)=ex-1<0,
∴f(x)在x∈(0,+∞)是增函数,在x∈(-∞,0)时是减函数,
即f(x)在x=0时取最小值f(0)=0,
∴f(x)≥f(0)=0,即f(x)=ex-x-1≥0,
∴ex≥x+1.…(6分)
(2)不等式f(x)>ax-1在x∈[
,2]上恒成立,即ex-x-1>ax-1在x∈[
,2]上恒成立,
亦即a<
在x∈[
,2]上恒成立,令g(x)=
,x∈[
,2],
以下求g(x)=
在x∈[
,2]上的最小值,
g′(x)=
,当x∈[
,1]时,g′(x)<0,
当x∈[
,1]时,g′(x)>0,
∴当x∈[
,1]时,g(x)单调递减,当x∈[
,1]时,g(x)单调递增,
∴g(x)在x=1处取得最小值为g(1)=e-1,
∴正数a的取值范围是(0,e-1).…(12分)
证明:(1)由题意知,要证ex≥x+1,只需证f(x)=ex-x-1≥0,
求导得f′(x)=ex-1,当x∈(0,+∞)时,f′(x)=ex-1>0,
当x∈(-∞,0)时,f′(x)=ex-1<0,
∴f(x)在x∈(0,+∞)是增函数,在x∈(-∞,0)时是减函数,
即f(x)在x=0时取最小值f(0)=0,
∴f(x)≥f(0)=0,即f(x)=ex-x-1≥0,
∴ex≥x+1.…(6分)
(2)不等式f(x)>ax-1在x∈[
1 |
2 |
1 |
2 |
亦即a<
ex-x |
x |
1 |
2 |
ex-x |
x |
1 |
2 |
以下求g(x)=
ex-x |
x |
1 |
2 |
g′(x)=
ex(x-1) |
x2 |
1 |
2 |
当x∈[
1 |
2 |
∴当x∈[
1 |
2 |
1 |
2 |
∴g(x)在x=1处取得最小值为g(1)=e-1,
∴正数a的取值范围是(0,e-1).…(12分)
看了 已知函数f(x)=ex-x-...的网友还看了以下:
1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).(2)已知f 2020-05-13 …
已知f(x)满足af(x)+f(1/x)=ax(x∈R且x≠0,a为常数,且a≠±1),求f(x) 2020-05-13 …
已知函数f(x)=x的3次方+ax方+x+b,其中a,b属于R(1)若f(x)在x=1处取极小值0 2020-05-23 …
高中数学~高手进.难题!已知f(x)=ax/(ax+b)且不等式|f(x)|>2的解集为(-2,- 2020-06-04 …
已知函数f(x)=ax的平方+2x+c(x属于r)满足f(x+1=ax的平方+4.(1)求f(x) 2020-07-14 …
已知函数f(x)=x³-ax²-3x,(1)若f(x)在区间[1,正无穷)上是增函数,求a已知函数 2020-07-18 …
若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为多少?若不等式x2+ 2020-07-31 …
已知函数f(x)=x^3-ax-1,若f(x)在实数集R上单调递增,求实数a的取值范围已知函数f(x 2020-11-17 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
设函数f(x)=e^x-1-x-ax^2若当x>=0时,f(x)>=0,求a的取值范围我做的过程是令 2020-12-27 …