早教吧作业答案频道 -->其他-->
已知函数f(x)=|x-a|-lnx(a>0)(Ⅰ)若a=1,求f(x)的单调区间及f(x)的最小值;(Ⅱ)若a>0,求f(x)的单调区间;(Ⅲ)证明:ln222+ln332+…+lnnn2<2n2−n+14(n+1)(n∈N+,n≥2)
题目详情
已知函数f(x)=|x-a|-lnx(a>0)
(Ⅰ)若a=1,求f(x)的单调区间及f(x)的最小值;
(Ⅱ)若a>0,求f(x)的单调区间;
(Ⅲ)证明:
+
+…+
<
(n∈N+,n≥2)
(Ⅰ)若a=1,求f(x)的单调区间及f(x)的最小值;
(Ⅱ)若a>0,求f(x)的单调区间;
(Ⅲ)证明:
ln2 |
22 |
ln3 |
32 |
lnn |
n2 |
2n2−n+1 |
4(n+1) |
▼优质解答
答案和解析
(Ⅰ)a=1时,f(x)=|x-1|-lnx (x>0)
当0<x≤1,f(x)=1-(x+lnx),f′(x)=-1-
<0,所以f(x)在(0,1]上单调递减;
当x>1,f(x)=x-(1+lnx),f′(x)=1-
=
>0,所以f(x)在(1,+∞)上单调递增,
∴x=1时,f(x)的最小值为f(1)=0;
(Ⅱ)若a≥1,当x≥a时,f(x)=x-a-lna,f′(x)=1-
=
≥0,∴f(x)在区间[a,+∞)上单调递增;
当0<x<a时,f(x)=a-x-lnx,f′(x)=-1-
<0,所以f(x)在(0,a)上单调递减;
若0<a<1,当x≥a时,f(x)=x-a-lna,f′(x)=1-
=
,x>1,f′(x)>0,a<x<1,f′(x)<0
∴f(x)在区间[1,+∞)上单调递增,(a,1)上单调递减;
当0<x<a时,f(x)=a-x-lnx,f′(x)=-1-
<0,所以f(x)在(0,a)上单调递减;
而f(x)在x=a处连续,则f(x)在(1,+∞)上单调递增,(0,1)上单调递减
综上,当a≥1时,f(x)的递增区间是(a,+∞),递减区间是(0,a);当0<a<1时,f(x)的递增区间是(1,+∞),递减区间是(0,1);
(Ⅲ)证明:由(Ⅰ)可知,当a=1,x>1时,f(x)≥0,∴1-(x+lnx)≥0,∴lnx≤x-1.
∵x>0,∴
≤1−
∵n∈N+,n≥2,令x=n2,得
≤
(1−
),
∴
+
+…+
≤
(1-
+1-
+…+1-
)
=
[n-1-(
当0<x≤1,f(x)=1-(x+lnx),f′(x)=-1-
1 |
x |
当x>1,f(x)=x-(1+lnx),f′(x)=1-
1 |
x |
x−1 |
x |
∴x=1时,f(x)的最小值为f(1)=0;
(Ⅱ)若a≥1,当x≥a时,f(x)=x-a-lna,f′(x)=1-
1 |
x |
x−1 |
x |
当0<x<a时,f(x)=a-x-lnx,f′(x)=-1-
1 |
x |
若0<a<1,当x≥a时,f(x)=x-a-lna,f′(x)=1-
1 |
x |
x−1 |
x |
∴f(x)在区间[1,+∞)上单调递增,(a,1)上单调递减;
当0<x<a时,f(x)=a-x-lnx,f′(x)=-1-
1 |
x |
而f(x)在x=a处连续,则f(x)在(1,+∞)上单调递增,(0,1)上单调递减
综上,当a≥1时,f(x)的递增区间是(a,+∞),递减区间是(0,a);当0<a<1时,f(x)的递增区间是(1,+∞),递减区间是(0,1);
(Ⅲ)证明:由(Ⅰ)可知,当a=1,x>1时,f(x)≥0,∴1-(x+lnx)≥0,∴lnx≤x-1.
∵x>0,∴
lnx |
x |
1 |
x |
∵n∈N+,n≥2,令x=n2,得
lnn |
n2 |
1 |
2 |
1 |
n2 |
∴
ln2 |
22 |
ln3 |
32 |
lnn |
n2 |
1 |
2 |
1 |
22 |
1 |
32 |
1 |
n2 |
=
1 |
2 |
1 | ||||||||||
22<
作业帮用户
2017-09-19
![]() ![]() |
看了 已知函数f(x)=|x-a|...的网友还看了以下:
3道对数函数题目,1已知f(x^n)=lnx,则f(2)的值是()2(log510)^3-(log5 2020-03-30 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
设f(N)、g(N)是定义在正数集上的正函数.如果存在正的常数C和自然数N0,使得当N≥N0时有f 2020-07-31 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
函数f(x)满足lnx=[1+f(x)]/[1-f(x)],且x1与x2均大于e,f(x1)+f(x 2020-10-31 …
若存在x0,n属于N,使f(x0)+f(x0+1)+……+f(x0+n)=63成立若存在x0,n属于 2020-10-31 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …