早教吧作业答案频道 -->数学-->
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2a3=3则a1+a2+a3+...+a2014=2.数列{a(n)}的首项为1,数列{b(n)}为等比数列且b(n)=a(n+1)/a(n),若b4b5=2则a9=3.设SnTn分别是等差数列{a(n)}{b(n)}的前项和,已知Sn/Tn=2
题目详情
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1 a2=2 a3=3则a1+a2+a3+...+a2014=
2.数列{a(n)}的首项为1,数列{b(n)}为等比数列且b(n)=a(n+1)/a(n),若b4b5=2则a9=
3.设Sn Tn分别是等差数列{a(n)}{b(n)}的前项和,已知Sn/Tn=2n+1/4n-2,则a10/b3+b18+a11/b6+b15=
4.已知等差数列{an}的首项a1及公差d都是整数,前项和为Sn,若a1>1,a4>3,S3≤9,设b(n)=a(n)2^n则b1+b2+b3+...+bn=
2.数列{a(n)}的首项为1,数列{b(n)}为等比数列且b(n)=a(n+1)/a(n),若b4b5=2则a9=
3.设Sn Tn分别是等差数列{a(n)}{b(n)}的前项和,已知Sn/Tn=2n+1/4n-2,则a10/b3+b18+a11/b6+b15=
4.已知等差数列{an}的首项a1及公差d都是整数,前项和为Sn,若a1>1,a4>3,S3≤9,设b(n)=a(n)2^n则b1+b2+b3+...+bn=
▼优质解答
答案和解析
第一题,因为 a(n)a(n+1)a(n+2)a(n+3)=24,且 a1=1,a2=2,a3=3,由此可得到:a(4)=4.当n=2时,又得到a(5)=1,所以,a1+a2+a3+.+a2014 =10 * 503.5 =5035
第二题,a1=1,b1=a2/a1,可得 b1=a2,又因为b2=a3/a2=a3/b1,所以a3=b1b2,一步一步可得,a9=b1b2b3.b8,又因为b4b5=2,且,b(n)为等比,所以a9=2 *4 =8
第三题,
哈哈,毕业时间太久,基本忘光了,后面两题,有点不知道什么意思了,第四题中,我做到 a1=2,等差d=1,b(n)=a(n)2^n,
第二题,a1=1,b1=a2/a1,可得 b1=a2,又因为b2=a3/a2=a3/b1,所以a3=b1b2,一步一步可得,a9=b1b2b3.b8,又因为b4b5=2,且,b(n)为等比,所以a9=2 *4 =8
第三题,
哈哈,毕业时间太久,基本忘光了,后面两题,有点不知道什么意思了,第四题中,我做到 a1=2,等差d=1,b(n)=a(n)2^n,
看了 1.已知数列{a(n)}满足...的网友还看了以下:
(1/2)有穷数列(an)的前n项和Sn=2n^2+n,现从中抽取某一项(不包括首项、末项)后,余 2020-06-13 …
n-1)+(n-2)+(n-3)+·············+3+2+1等于多少(n-1)+(n- 2020-07-10 …
n和n-1到底选哪个首项做数列题经常遇到这样的情况,例如a(n)-1/a(n-1)-1=4我们需要 2020-07-14 …
已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令cn=(?1)nSn(n∈N*) 2020-07-19 …
对于数列若存在常数M>0,对任意的n∈,恒有+…≤M则称数列为B-数列(1)首项为1,公比为q(| 2020-07-22 …
若数列的第n项等于第n+1项加上第n+1项的倒数,且首相为2,求数列通项若数列的第n项等于第n+1 2020-07-30 …
1首项和公比都为3的等比数列的前n项和胃Sn求{Sn}的前n项和Tn2求数列{(2n-1)3的n次 2020-07-30 …
已知各项均为正数的数列an的首项为1,且log2a(n+1)=log2an+1,数列bn-an为等 2020-07-30 …
1.设{An}是首项为1的正项数列,且(n+1)a的平方的小n+1减na平方的第n项加a的第n项+ 2020-07-30 …
一、填空题.(1)数列图像特征是.(2)数列{n-1/n+1}的前五项为.(3)等差数列{an}的 2020-08-01 …