早教吧作业答案频道 -->数学-->
高中数学函数周期问题函数f(x+t)=[1+f(x)]/[1-f(x)]的周期.类似tan(α+β)=(tanα+tanβ)/(1—tanαtanβ)的函数的周期有什么规律
题目详情
高中数学函数周期问题
函数f(x+t)=[1+f(x)]/[1-f(x)] 的周期.
类似tan(α+β)=(tanα+tanβ)/(1—tanαtanβ) 的函数的周期有什么规律
函数f(x+t)=[1+f(x)]/[1-f(x)] 的周期.
类似tan(α+β)=(tanα+tanβ)/(1—tanαtanβ) 的函数的周期有什么规律
▼优质解答
答案和解析
f(x)满足f(x+1)=[1+f(x)] / [1-f(x)],试问f(x)是周期函数吗
将原式x赋值为x+1得:f(x+2)=[1+f(x+1)]/[1-f(x+1)]
将f(x+1)=[1+f(x)]/[1-f(x)]代人上式,化简得:
f(x+2)=-1/f(x)
所以f(x)=-1/f(x+2) (*)
将(*)式x变为x+2可以得到:f(x+2)=-1/f(x+4) 代人(*) 式 化简得:
f(x)=f(x+4)
所以f(x)的周期T=4
将原式x赋值为x+1得:f(x+2)=[1+f(x+1)]/[1-f(x+1)]
将f(x+1)=[1+f(x)]/[1-f(x)]代人上式,化简得:
f(x+2)=-1/f(x)
所以f(x)=-1/f(x+2) (*)
将(*)式x变为x+2可以得到:f(x+2)=-1/f(x+4) 代人(*) 式 化简得:
f(x)=f(x+4)
所以f(x)的周期T=4
看了 高中数学函数周期问题函数f(...的网友还看了以下:
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
f(x)是定义在n+上的函数f(a)+f(b)=f(a+b)-abf(1)=1f(x)是定义在n+ 2020-05-15 …
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的 2020-06-10 …
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的 2020-06-10 …
已知f(x)在x=a可导,且f(x)>0,n为自然数,求lim[f(a+1/n)/f(a)]^n( 2020-06-12 …
关于函数导数的问题1、求函数f(x)=x^n(n属于正自然数)在x=a处的导数.f'(a)=(x^ 2020-07-21 …
凸n边形有f(n)条对角线,则凸n+1边形有对角线条数f(n+1)为()A.f(n)+n+1B.f 2020-08-02 …
已知f(x)是定义在(-∞,+∞)上的不恒为零的函数且对于定义域内的任意x、y,f(x)都满足f(x 2020-11-10 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …