早教吧作业答案频道 -->数学-->
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是()A.n![f(x)]n+1B.n[f(x)]n+1C.[f(x)]2nD.n![f(x)]2n
题目详情
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是( )
A. n![f(x)]n+1
B. n[f(x)]n+1
C. [f(x)]2n
D. n![f(x)]2n
A. n![f(x)]n+1
B. n[f(x)]n+1
C. [f(x)]2n
D. n![f(x)]2n
▼优质解答
答案和解析
设y=f(x),则可建立微分方程
=y2
∴
=dx,解得y=−
(C为常数)
又由高阶导数公式:(
)(n)=
,f(n)(x+a)=[f(x+a)](n)
∴y(n)=(−
)(n)=
=n!yn+1
故选:A.
dy |
dx |
∴
dy |
y2 |
1 |
x+C |
又由高阶导数公式:(
1 |
x |
(−1)nn! |
xn+1 |
∴y(n)=(−
1 |
x+C |
(−1)n+1n! |
(x+C)n+1 |
故选:A.
看了 已知函数f(x)具有任意阶导...的网友还看了以下:
这是什么迭代公式?x(n+1)=x(n)-2*f(x(n))*f1(x(n))/(2*f1(x(n 2020-04-27 …
一道高一水平的数学体,具体如下:函数y=f(x)定义在R上,当x>0时,f(x)>1,且对任意m, 2020-06-05 …
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的 2020-06-10 …
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的 2020-06-10 …
高阶导数的问题高等数学第六版上册(同济大学编)P100有句话如果函数f(x)在点x处具有n阶导数, 2020-06-10 …
设f(x)=[(x-a)^n]*h(x),其中h(x)在点a的某邻域内具有n-1阶导数,求f(a) 2020-07-13 …
高数………………设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f 2020-07-21 …
f(x)在x=x0具有n阶导数(这就意味着f(x)在x=x0的某邻域应具有n-1阶导数)什么意思 2020-07-31 …
f(x)在x=x0处具有n阶导数,这就意味着f(x)在x=x0的某邻域具有n-1阶导数。这句话什么 2020-07-31 …
高数………………设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f 2020-07-31 …