早教吧作业答案频道 -->数学-->
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是()A.n![f(x)]n+1B.n[f(x)]n+1C.[f(x)]2nD.n![f(x)]2n
题目详情
已知函数f(x)具有任意阶导数,且f′(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是( )
A. n![f(x)]n+1
B. n[f(x)]n+1
C. [f(x)]2n
D. n![f(x)]2n
A. n![f(x)]n+1
B. n[f(x)]n+1
C. [f(x)]2n
D. n![f(x)]2n
▼优质解答
答案和解析
设y=f(x),则可建立微分方程
=y2
∴
=dx,解得y=−
(C为常数)
又由高阶导数公式:(
)(n)=
,f(n)(x+a)=[f(x+a)](n)
∴y(n)=(−
)(n)=
=n!yn+1
故选:A.
| dy |
| dx |
∴
| dy |
| y2 |
| 1 |
| x+C |
又由高阶导数公式:(
| 1 |
| x |
| (−1)nn! |
| xn+1 |
∴y(n)=(−
| 1 |
| x+C |
| (−1)n+1n! |
| (x+C)n+1 |
故选:A.
看了 已知函数f(x)具有任意阶导...的网友还看了以下:
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-04-26 …
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-05-12 …
原函数与不定积分的结论1、如果f(x)有原函数,那么f(x)的原函数一定有无数多个.2、如果F(x 2020-05-13 …
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f 2020-05-17 …
函数的几个问题由于是预习所以有点摸不着头脑1、已知函数f(x)是一次函数且满足3f(x+1)-2f 2020-06-06 …
关于反函数的一个小推理同一坐标系中,y=f(x)与他的反函数x=f-1(y)的图形是一致的.但是, 2020-06-13 …
函数-已知函数f(x)=2mx22(4-m)x+1,g(x)=mx①若函数f(x)在x属于函数-已 2020-07-27 …
周期函数选择一道任意实数x,f(x)=|sinx|,g(x)﹦x-n(n≤x<n+1,n∈z),在 2020-08-02 …
设f(x)是以T为周期的周期函数,则f(x)的原函数也是周期函数的充要条件是什么?为什么?原函数已 2020-08-02 …
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x) 2020-10-31 …