早教吧作业答案频道 -->数学-->
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a)=n*(f(n)的导数)*l...设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a)=n*(f(n)的导数)*ln(b/a)
题目详情
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n*(f(n)的导数)*l...
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a)
=n*(f(n)的导数)*ln(b/a)
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a)
=n*(f(n)的导数)*ln(b/a)
▼优质解答
答案和解析
函数为f(x)和 g(x)=lnx,在以a,b为端点的区间上满足柯西中值定理条件,(lnx) '=1/x,所以有定理的结论:[f(b)-f(a)]/[lnb-lna]=f '(n)/(1/n),其中n介于a,b之间,而lnb-lna=lnb/a,从而得所要证的结论
看了 设f(x)在[a,b]上可微...的网友还看了以下:
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f( 2020-03-30 …
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x) 2020-05-14 …
微积分 当x≥0时.对f(x)在【0,b】上应用拉格朗日中值定理,有f(b)-f(0)=f’(ξ) 2020-05-16 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微分,中值定理设f(X),g(x)都在 2020-07-13 …
可见光的波长范围为()A.0.4-0.76微米B.0.15-4微米C.小于0.4微米D.大于0.7 2020-07-17 …
设a,b不共线,则关于x的方程ax²+bx+c=0的解的情况是A至少有一个实数解B至多有一设a,b 2020-07-25 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D 2020-10-31 …
下列加点文言实词的解释全都不相同的一组是()A.屈平属草稿未定亡国破家相随属衡少善属文有良田美池桑竹 2020-12-10 …