早教吧作业答案频道 -->数学-->
高数题,求解设f(x)在(-∞,∞)上可导,f(x)f'(x)>0.证明,f(x)至多只有一个零点
题目详情
高数题,求解
设f(x)在(-∞, ∞)上可导,f(x) f'(x)>0.证明,f(x)至多只有一个零点
设f(x)在(-∞, ∞)上可导,f(x) f'(x)>0.证明,f(x)至多只有一个零点
▼优质解答
答案和解析
构造函数φ(x)=1/2[f(x)]^2+f(x)
则φ'(x)=f(x)+f'(x)
依题意,f(x)+f'(x)>0
即φ'(x)>0,从而φ(x)单调递增!
又φ(x)可看作是t=f(x)与φ(t)=1/2t^2+t复合而成,因此f(x)也在实数集R上单调递增!(同增异减原则)
①当lim(x→∞)f(x)=0时,f(x)无零点!
②当lim(x→∞)f(x)=∞时,f(x)有唯一零点!
综上:f(x)至多有一个零点!
构造函数φ(x)=1/2[f(x)]^2+f(x)
则φ'(x)=f(x)+f'(x)
依题意,f(x)+f'(x)>0
即φ'(x)>0,从而φ(x)单调递增!
又φ(x)可看作是t=f(x)与φ(t)=1/2t^2+t复合而成,因此f(x)也在实数集R上单调递增!(同增异减原则)
①当lim(x→∞)f(x)=0时,f(x)无零点!
②当lim(x→∞)f(x)=∞时,f(x)有唯一零点!
综上:f(x)至多有一个零点!
看了 高数题,求解设f(x)在(-...的网友还看了以下:
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-04-26 …
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-05-12 …
函数f(x)满足f(x+2)=-f(x),证明f(x)是周期函数,若f(1)>1,f(121)=a 2020-05-13 …
设f(x)在定义域R上的奇函数,并且y=(x)的图象关于x=1/2对称,则f(1)+f(2)+f( 2020-06-03 …
两道高数题1.已知f(x)=1+x的m次方*(1-x)的n次方,其中m,n为正整数,不经计算f'( 2020-07-20 …
高数证明题1设函数f(x)在[1.2]上连续,在{1,2}内可导,且f(2)=0,F(x)=(x- 2020-07-22 …
概率密度函数的计算题设X的概率密度有关系:f(-x)=f(x),证明任意a>0,F(-a)=1-F 2020-07-30 …
高等代数证明求神如果f'(x)|f(x),证明:f(x)有n重根,其中n为f(x)的次数(证明中你 2020-07-31 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
如果函数y=f(x)的图象关于x=a和x=b都对称,证明这个函数满足f[2(a-b)+x]=f(x) 2020-11-19 …