早教吧作业答案频道 -->数学-->
高数证明题设f(x)在(a,b)内二阶可导,且f(x)''>=0,试证对于∀x1,x2∈(a,b)和t∈[0,1],有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)
题目详情
高数证明题
设f(x)在(a,b)内二阶可导,且f(x)''>=0,试证对于∀x1,x2∈(a,b)和t∈[0,1],有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)
设f(x)在(a,b)内二阶可导,且f(x)''>=0,试证对于∀x1,x2∈(a,b)和t∈[0,1],有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)
▼优质解答
答案和解析
不妨设x1x2
原式即t*{f(x2)-f[(1-t)*x1+t*x2]}>=(1-t){f[(1-t)*x1+t*x2]-f(x1)}(1)
f(x)在[x1,x2]内连续(x1,x2)内可导
则由中值定理得
f(x2)-f[(1-t)*x1+t*x2]=f'(m)*(1-t)*(x2-x1) m∈((1-t)*x1+t*x2,x2)
f[(1-t)*x1+t*x2]-f(x1)=f'(n)*t*(x2-x1) n∈(x1,(1-t)*x1+t*x2)
又f"(x)>=0 m>n 得f'(m)>=f'(n) 又0
原式即t*{f(x2)-f[(1-t)*x1+t*x2]}>=(1-t){f[(1-t)*x1+t*x2]-f(x1)}(1)
f(x)在[x1,x2]内连续(x1,x2)内可导
则由中值定理得
f(x2)-f[(1-t)*x1+t*x2]=f'(m)*(1-t)*(x2-x1) m∈((1-t)*x1+t*x2,x2)
f[(1-t)*x1+t*x2]-f(x1)=f'(n)*t*(x2-x1) n∈(x1,(1-t)*x1+t*x2)
又f"(x)>=0 m>n 得f'(m)>=f'(n) 又0
看了 高数证明题设f(x)在(a,...的网友还看了以下:
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
已知f(0)=0,f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4|f''(x) 2020-05-17 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …