早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f(x)在[0,正无穷)上单增且有界,f(x)在(0,正无穷)内有二阶导且二阶导小于0,证x趋近正无穷f’(x)=0

题目详情
f(x)在[0,正无穷)上单增且有界,f(x)在(0,正无穷)内有二阶导且二阶导小于0,证x趋近正无穷f ’(x)=0
▼优质解答
答案和解析
因为f(x)在[0,正无穷)上单增且有界,故由单调有界定理得(x→+∞)limf(x)存在
不妨设(x→+∞)limf(x)=a,又因为有二阶导数,故一阶导数存在且连续
根据Lagrange中值定理得:存在ξ∈(x,x+1)使得f(x+1)-f(x)=f'(ξ)*(x+1-x)
在等式两边同取极限(x→+∞):lim(f(x+1)-f(x))=limf'(ξ)
即有:limf(x+1)-limf(x)=a-a=0=limf'(ξ)(x→+∞)
注意到:当x→+∞时,必有ξ→+∞,故有(ξ→+∞)limf'(ξ)=0
改写符号有:(x→+∞)limf'(x)=0
有不懂欢迎追问