早教吧作业答案频道 -->数学-->
如图所示,O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是O外一点,过点P作O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与O的交点.若PA,PB,PC的长都
题目详情
如图所示, O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是 O外一点,过点P作 O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与 O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.


▼优质解答
答案和解析
设方程x2+2(k-2)x+k=0的两个根为x1,x2,x1≤x2.由根与系数的关系得x1+x2=4-2k,①x1x2=k.②
由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
=
.
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
,
,
,
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.
设方程x2+2(k-2)x+k=0的两个根为x1,x2,x1≤x2.由根与系数的关系得x1+x2=4-2k,①x1x2=k.②由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
| PA |
| PB |
| PC |
| PA |
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
|
|
|
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.
看了 如图所示,O的直径的长是关于...的网友还看了以下:
X服从二项分布(或其他分布),X^2服从什么?若X服从二项分布B(k;n,p),那么Y=1-2X就 2020-05-15 …
概率统计矩法估计问题1,用矩法估计以下分布中的未知参数p(见图)p(ε=k)=p*(1-p)^(k 2020-05-17 …
一弹簧秤的称盘质量M1=1.5Kg,盘内放一物体P,P的质量M2=10.5Kg.弹簧质量不计.其劲 2020-06-30 …
已知两点M(-1,0),N(1,0),且点P使向量PM·向量PN-向量MP·向量MN=向量NM·向 2020-07-21 …
运行程序的结果,为什么,#includefunc(inta,intb){staticintm=0, 2020-07-22 …
设a是n(n>=1)次实系数多项式p(x)的k(k>=1)重根,试证明a是p'(x)的k-1重根 2020-07-31 …
集合M={x│x=3k-2,k∈Z},集合P={x│x=3l+1,l∈Z},集合S={x│x=6m 2020-08-01 …
M/P=kY-hr表示货币市场均衡,那M/P=Y的k次方乘以e的-hr(e是自然对数的底)次方表示 2020-08-02 …
关于功率公式P=W/t和P=Fv的说法正确的是()A.由P=W/t知,只要知道W和t就可以求出任意 2020-08-02 …
对于平面直角坐标系xOy中的点P(a,b),若点的坐标为(,)(其中k为常数,且),则称点为点P的“ 2020-11-22 …