早教吧作业答案频道 -->数学-->
如图所示,O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是O外一点,过点P作O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与O的交点.若PA,PB,PC的长都
题目详情
如图所示, O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是 O外一点,过点P作 O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与 O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.


▼优质解答
答案和解析
设方程x2+2(k-2)x+k=0的两个根为x1,x2,x1≤x2.由根与系数的关系得x1+x2=4-2k,①x1x2=k.②
由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
=
.
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
,
,
,
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.

由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
PA |
PB |
PC |
PA |
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
|
|
|
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.
看了 如图所示,O的直径的长是关于...的网友还看了以下:
若p,q,m为整数,且三次方程x的三次方+qx+m=0有整数解x=c若p,q,m为整数,且三次方程 2020-05-14 …
选修4-4坐标系与参数方程已知直线l过定点P(−3,−32)与圆C:x=5cosθy=5sinθ( 2020-06-12 …
圆锥曲线若直线y=x-b与抛物线y2=2px(p>0)相交于不同两点A(x1,y1),B(x2,y 2020-06-12 …
直角方程转化为极坐标方程中的P(rou)为什么能约掉?例题:将x²+y²-2ax=0转化为极坐标方 2020-06-14 …
在平面直角坐标系xoy中,已知圆p在x轴上截得线段长为2√2,在y轴上截得线段长为2√31,求圆心 2020-06-22 …
已知椭圆的离心率为,其左顶点A在圆上.(1)求椭圆W的方程;(2)若点P是椭圆W上不同于点A的点, 2020-07-14 …
已知圆P过点A(1,0),B(4,0).(1)若圆P还过点C(6,-2),求圆P的方程;(2)若圆 2020-07-26 …
已知点P(-2,-3)和以Q为圆心的圆(x-4)^2+(y-2)^2=91.求过P点的圆Q的直切线 2020-07-26 …
一元二次方程应用题甲乙两同学解方程x^2+px+q=0,甲看错了一次项系数,得根2和7,乙看错了常 2020-08-01 …
椭圆的中心在原点,焦点在x轴上,若它的长轴长为4,离心率为1/2.(1)求椭圆的标准方程.(2)若过 2021-01-13 …