早教吧作业答案频道 -->数学-->
如图所示,O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是O外一点,过点P作O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与O的交点.若PA,PB,PC的长都
题目详情
如图所示, O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是 O外一点,过点P作 O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与 O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.


▼优质解答
答案和解析
设方程x2+2(k-2)x+k=0的两个根为x1,x2,x1≤x2.由根与系数的关系得x1+x2=4-2k,①x1x2=k.②
由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
=
.
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
,
,
,
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.

由题设及①知,x1,x2都是整数.从①,②消去k,得2x1x2+x1+x2=4,(2x1+1)(2x2+1)=9.
由上式知,x2≤4,且当k=0时,x2=4,故最大的整数根为4.
于是 O的直径为4,所以BC≤4.
因为BC=PC-PB为正整数,所以BC=1,2,3或4.
连接AB,AC,因为∠PAB=∠PCA,所以△PAB∽△PCA,
PA |
PB |
PC |
PA |
故PA2=PB(PB+BC)③
(1)当BC=1时,由③得,PA2=PB2+PB,于是PB2<PA2<(PB+1)2,矛盾!
(2)当BC=2时,由③得,PA2=PB2+2PB,于是PB2<PA2<(PB+1)2,矛盾!
(3)当BC=3时,由③得,PA2=PB2+3PB,于是(PA-PB)(PA+PB)=3PB,
由于PB不是合数,结合PA-PB<PA+PB,
故只可能
|
|
|
解得PA=2,PB=1.
此时PA2+PB2+PC2=21.
(4)当BC=4,由③得,PA2=PB2+4PB,于是(PB+1)2<PB2+4PB=PA2<(PB+2)2,矛盾.
综上所述PA2+PB2+PC2=21.
看了 如图所示,O的直径的长是关于...的网友还看了以下:
图①是以AB为直径的半圆形纸片,AB=6cm,…………图①是以AB为直径的半圆形纸片,AB=6cm 2020-05-15 …
已知:以点C(t,t/2)(t属于R且不等于O)为圆心的圆与x轴交与O,A,与y轴相交与点O,B, 2020-06-06 …
水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC是一个( 2020-06-27 …
三角形ABc中与角C相邻的外角为100度,角A-角B=30度,则角A=度,角B=三角形ABc中与角 2020-07-09 …
根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线 2020-07-29 …
如图,在O中,E是弧AB的中点,C为O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB= 2020-07-29 …
1.点P为圆O外一点,PS、PT是两条切线,过点P作圆O的割线PAB,交圆O于A,B两点,与ST交 2020-07-31 …
K系与K’系是坐标轴相互平行的两个惯性系,K’系相对于K系沿OX轴正方向匀速运动.一根刚性尺静止在 2020-07-31 …
已知以点C(t,2/t)),(t>0)为圆心的圆与与X轴交与O,A,与Y轴交与点O,B其中O为坐标 2020-08-02 …
把△ABC按斜二测画法得到△A′B′C′(如图所示),其中B′O′=C′O′=1,A′O′=32, 2020-08-02 …