早教吧作业答案频道 -->数学-->
在△ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心.(Ⅰ)证明:D,E,F,O四点共圆;(Ⅱ)证明:O在∠DEF的平分线上.
题目详情
在△ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心.

(Ⅰ)证明:D,E,F,O四点共圆;
(Ⅱ)证明:O在∠DEF的平分线上.

(Ⅰ)证明:D,E,F,O四点共圆;
(Ⅱ)证明:O在∠DEF的平分线上.
▼优质解答
答案和解析
(Ⅰ)∵△BDE中,DE=BE,∴∠EDB=∠B,可得∠BED=180°-2∠B,
同理可得∠CEF=180°-2∠C,
∴∠DEF=180°-∠BED-∠CEF=180°-(180°-2∠B)-(180°-2∠C)=2∠B+2∠C-180°,
∵∠B+∠C=180°-∠A,
∴∠DEF=2∠B+2∠C-180°=2(180°-∠A)-180°=180°-2∠A
∵∠DEF=180°-2∠A>0,
∴∠A是锐角,可得△ADF的外心O与顶点A在DF的同侧,
因此,△ADF的外接圆中,∠DOF=2∠A
∴∠DEF=180°-∠DOF,得∠DEF+∠DOF=180°,
因此,四边形ODEF是圆内接四边形,即D、E、F、O四点共圆;
(Ⅱ)由(Ⅰ)的证明,可得
∵在四边形ODEF的外接圆中,∠DEO与∠DFO对相同的弧,
∴∠DEO=∠DFO,同理可得∠FDO=∠FEO,
∵O是△ADF的外心,可得OD=OF,
∴∠FDO=∠DFO,可得∠FEO=∠DEO,即O在∠DEF平分线上.
同理可得∠CEF=180°-2∠C,
∴∠DEF=180°-∠BED-∠CEF=180°-(180°-2∠B)-(180°-2∠C)=2∠B+2∠C-180°,
∵∠B+∠C=180°-∠A,
∴∠DEF=2∠B+2∠C-180°=2(180°-∠A)-180°=180°-2∠A

∵∠DEF=180°-2∠A>0,
∴∠A是锐角,可得△ADF的外心O与顶点A在DF的同侧,
因此,△ADF的外接圆中,∠DOF=2∠A
∴∠DEF=180°-∠DOF,得∠DEF+∠DOF=180°,
因此,四边形ODEF是圆内接四边形,即D、E、F、O四点共圆;
(Ⅱ)由(Ⅰ)的证明,可得
∵在四边形ODEF的外接圆中,∠DEO与∠DFO对相同的弧,
∴∠DEO=∠DFO,同理可得∠FDO=∠FEO,
∵O是△ADF的外心,可得OD=OF,
∴∠FDO=∠DFO,可得∠FEO=∠DEO,即O在∠DEF平分线上.
看了 在△ABC的边AB,BC,C...的网友还看了以下:
初三数学二次函数综合题,如图,在平面直角坐标系中……如图,平面直角坐标系中,A,B两点在x轴上,点C 2020-03-30 …
等边三角形ABC在平面直角坐标系中,点B,A分别在X轴的正负半轴上,点O恰好在AB的中点上,点C在 2020-05-16 …
已知二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正已知 2020-05-16 …
如图,同一数轴上四点A、B、C、D所对··如图,同一数轴上四点A、B、C、D所对应的数分别为正数a 2020-06-02 …
已知二次函数y=ax²+bx+c的图像过A(2,0),且与直线y=-4分之3x+3,相交与B,C两 2020-06-15 …
初三数学题抛物线一般式与X轴相交与点A、B,与Y轴小于点C,其中点A为(-1,0),点B在X轴的正 2020-08-01 …
如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地 2020-10-30 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.(1)点C在数轴上,满足A 2020-11-19 …
如图,三点A,B,D在数轴上,点A,B在数轴上表示的数分别为-12,16.若点C在数轴上,满足AC- 2020-11-19 …
抛物线:y=ax²-5x+4经过△ABC的三个顶点,已知BC//x轴,点A在x轴上,点C在y轴上,且 2020-11-28 …