早教吧作业答案频道 -->其他-->
如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的
题目详情
如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.

(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.

(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.
▼优质解答
答案和解析
(1)ED与⊙O的位置关系是相切.理由如下:
连接OD,
∵∠CAB的平分线交⊙O于点D,
∴
=
,
∴OD⊥BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴OD⊥DE,
∴ED与⊙O的位置关系是相切;
(2)连接BD.
∵AB是直径,
∴∠ADB=90°,
在直角△ABD中,BD=
=
=
,
∵AB为直径,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD∽△BAD,
∴
=
∴FD=
∴AF=AD-FD=5-
=
.

连接OD,
∵∠CAB的平分线交⊙O于点D,
∴
![]() |
CD |
![]() |
BD |
∴OD⊥BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴OD⊥DE,
∴ED与⊙O的位置关系是相切;
(2)连接BD.
∵AB是直径,
∴∠ADB=90°,
在直角△ABD中,BD=
AB2−AD2 |
36−25 |
11 |
∵AB为直径,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD∽△BAD,
∴
FD |
BD |
BD |
AD |
∴FD=
11 |
5 |
∴AF=AD-FD=5-
11 |
5 |
14 |
5 |
看了 如图,AB是⊙O的直径,点C...的网友还看了以下:
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
离散数学证明题,已知A,B为两个任意集合,求证:A-(A∩B) = (A∪B)-B .已知A,B为 2020-04-05 …
已知:a>0,b>0,a+b=1,求证:(a+1/a)(b+1/b)>=25/4 ..求最简单的证 2020-04-06 …
求解几道不等式证明1.求证:x²>4x—5.2.求证:a的四次方+1≥a的三次方+a3.已知a>0 2020-04-27 …
有三道,过程也要写上面.一.求证:小括号里2分之a+b整体的平方小于等于2分之a方加b方二.已知a 2020-08-01 …
用反证法证明:已知a、b、c∈(0,1),求证:(1-a)*b;(1-b)*c;(1-c)*a不能 2020-08-01 …
a是x2+x+1=0方程的根求证a不是实数反证法a是x2+x+1=0方程的根求证a不是实数用反证法 2020-08-01 …
用反证法证明:已知,在同一平面内有三条直线a,b,c,a⊥c,b⊥c.求证:a∥b.证明:假设所求 2020-08-01 …
证明不等式:(1)设a>0,b>0,求证:a5+b5≥a3b2+a2b3(2)已知a≥1,求证:a+ 2020-10-31 …
高一数学题3已知a、b、为非零向量,求证a⊥b|a+b|=|a-b|.4已知a+b=c,a-b=c, 2020-11-02 …