如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.(1)求证:四边形ACED是矩形;(2)若∠AOD=120°,AC=4,求对角线CD的长.
如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.
(1)求证:四边形ACED是矩形;
(2)若∠AOD=120°,AC=4,求对角线CD的长.
【考点】矩形的判定;平行四边形的性质.
【分析】(1)根据平行四边形的性质得出AD∥BC,AD=BC,AB=DC,求出AD=CE,AD∥CE,AE=DC,根据矩形的判定得出即可;
(2)根据矩形的性质得出OA=AE,OC=
CD,AE=CD,求出OA=OC,求出△AOC是等边三角形,即可得出答案.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,AB=DC,
∵CE=BC,
∴AD=CE,AD∥CE,
∴四边形ACED是平行四边形,
∵AB=DC,AE=AB,
∴AE=DC,
∴四边形ACED是矩形;
(2)∵四边形ACED是矩形,
∴OA=AE,OC=
CD,AE=CD,
∴OA=OC,
∵∠AOC=180°﹣∠AOD=180°﹣120°=60°,
∴△AOC是等边三角形,
∴OC=AC=4,
∴CD=8.
【点评】本题考查了矩形的性质和判定,平行四边形的性质,等边三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键.
已知D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.已知D是AB 2020-04-27 …
如图在三角形ABC中,D是BC上一点,E是AC上一点,且满足AD=AB,角ADE=角C1,如图在三 2020-05-15 …
正方形ABCD,E为对角线AC上一动点连BE,EG⊥BE交CD与G,连BG交AC于F,BE=EG( 2020-06-15 …
正方形ABCD,E为对角线AC上一动点,连接BE,EG垂直于BE,交CD于G,连接BG,交AC于F 2020-06-15 …
在三角形中,AD为Bc上中线,E为Ac上任一点,BE交AD午点0,当AE与Ac的比值...在三角形 2020-06-15 …
急,三角形ABC中,角A为直角,AB上点E与AC上点F的连线EF平行...急,三角形ABC中,角A 2020-06-27 …
O,H分别是三角形ABC的外心,垂心,点D在AB上,AD=AH点E在AC上AE=AO,求证:DE= 2020-07-30 …
如图1,△ABC为等边三角形,△ADE是△ABC的位似图形,位似比为k:1,点D在AB上,点E在A 2020-08-02 …
已知等边三角形ABC的边长为6,E是AC上一动点已知等边△ABC的边长为6,E是AC上一动点,且D 2020-08-02 …
初二数学(只是画不上图)如图,等边三角形ABC边长为a,P是三角形ABC内一点,PD平行AB,PE 2020-08-03 …