早教吧作业答案频道 -->数学-->
a>0,b>0,n》0,且n是正整数,证明a^n+b^n》a^(n-1)b+ab^(n-1)
题目详情
a>0,b>0,n》0,且n是正整数,证明a^n+b^n》a^(n-1)b+ab^(n-1)
▼优质解答
答案和解析
a^n+b^n-[a^(n-1)b+ab^(n-1)]
=a^n-a^(n-1)b+b^n-ab^(n-1)
=(a-b)a^(n-1)-(a-b)b^(n-1)
=(a-b)[a^(n-1)-b^(n-1)]
当a>b时,可得:a-b>0,a^(n-1)-b^(n-1)≥0
所以(a-b)[a^(n-1)-b^(n-1)]≥0,即a^n+b^n》a^(n-1)b+ab^(n-1)
当a=b时,(a-b)[a^(n-1)-b^(n-1)]=0,
a^n+b^n=a^(n-1)b+ab^(n-1)
当a
=a^n-a^(n-1)b+b^n-ab^(n-1)
=(a-b)a^(n-1)-(a-b)b^(n-1)
=(a-b)[a^(n-1)-b^(n-1)]
当a>b时,可得:a-b>0,a^(n-1)-b^(n-1)≥0
所以(a-b)[a^(n-1)-b^(n-1)]≥0,即a^n+b^n》a^(n-1)b+ab^(n-1)
当a=b时,(a-b)[a^(n-1)-b^(n-1)]=0,
a^n+b^n=a^(n-1)b+ab^(n-1)
当a
看了 a>0,b>0,n》0,且n...的网友还看了以下:
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明, 2020-05-13 …
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两 2020-05-13 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
初等数论的几个问题(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1(2 2020-06-12 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
n+1个n维向量一定线性相关的证明,如果是n+1个n维行向量就证不出来了列向量的证明我知道了.但是 2020-07-22 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设α1,α2,...αn是n个n维向量,若n维标准基向量e1,e2,.en能由它们线性表示,证明α1 2020-10-31 …
n是任意大于2的质数,那么n-3,n-1,n-5谁不可能是质数?只选一个,不过答案是n+5,怎么会, 2020-11-17 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …