早教吧作业答案频道 -->数学-->
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明,加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n①对n用归纳法n=1时显然成立(2p+1)^(n+1)=(2p+1)^n*(2p+1)≥[(2p)^n+(2p-1)^n]*(2p+1)>(
题目详情
一个不等式证明
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
▼优质解答
答案和解析
是不合理的.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
看了 一个不等式证明已知n∈N+,...的网友还看了以下:
设n为自然数,求证:(2-1/n)×(2-3/n)×(2-5/n)×...×(2-2n-1/n)≥ 2020-05-20 …
高中数学难题,设数列an满足an=n^2/[(3^n+n)-n],证明an≤4/9(提示用多种方法 2020-05-21 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
在数列{an}中,a1=2,an+1(下标)=λan(下标)+λ^(n+1)+(2-λ)2^n(n 2020-07-29 …
用数学归纳法证明(1-x)(1+x+x^2+……+x^(n-1))=1-x^n证:当N=1时,(1 2020-08-01 …
用数列归纳法证明设f(n)=1+1/2+1/3+...+1/n,证明n+f(1)+...f(n-1 2020-08-01 …
用数学归纳法证明:证明:对大于2的一切正整数n证明:对大于2的一切正整数n,下列不等式成立(1+2 2020-08-01 …
k=K/N,证明(Δk/k)=(ΔK/K)-(ΔN/N)提示:可以用k=K/N取自然对数,然后再关 2020-08-02 …
从n个数中取k个数可以重复有多少种不同的取法如果是n^k显然重复了很多n+k-1)忘说了123312 2020-12-02 …
n+adj+n这种语法是对的吗,最近在网上看见一句话,Mynameischirtmas.Willyo 2020-12-21 …