早教吧作业答案频道 -->数学-->
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明,加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n①对n用归纳法n=1时显然成立(2p+1)^(n+1)=(2p+1)^n*(2p+1)≥[(2p)^n+(2p-1)^n]*(2p+1)>(
题目详情
一个不等式证明
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
▼优质解答
答案和解析
是不合理的.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
看了 一个不等式证明已知n∈N+,...的网友还看了以下:
如何用递归来写行列式的算法计算N阶行列式可以化成N-1阶 2020-03-30 …
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
我刚才那个问题继续追问,幂级数那个因为那边追问超过5条了,消耗财富值太多了,有点浪费,我换一个新的 2020-05-02 …
分解因式:-3a^n-1+12a^n-12a^n+1(n为大于1的整数)n如何调出来变成n-1呢? 2020-05-20 …
n+n+1/2能化解成n+1/2吗. 2020-06-05 …
协议内表示周期时,如两小时,写成N+1小时和2小时的区别?在好多协内发现有好多关于周期类的,如回款 2020-06-17 …
有理数与自然数一一对应,下面的构造方法为何成立?自然数集和整数集可以一一对应把任何一个有理数写成q 2020-07-13 …
已知n条线段其中任意n-1边形均可做成n-1边形,证明:可以用其中某三条线段做成一个三角形 2020-07-30 …
给定n条线段,已知用其中任n-1条线段均可作成n-1边形,证明:可以用其中某3线段组成三角形? 2020-07-30 …
一个n阶矩阵A,主对角线上都是1,其他都是a,怎么化简成(n-1)a+1乘以一个一行1,一列0,1 2020-08-02 …