早教吧作业答案频道 -->数学-->
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明,加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n①对n用归纳法n=1时显然成立(2p+1)^(n+1)=(2p+1)^n*(2p+1)≥[(2p)^n+(2p-1)^n]*(2p+1)>(
题目详情
一个不等式证明
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n
下面是我的证明,
加强命题:已知p≤n,求证:(2p+1)^n≥(2p)^n+(2p-1)^n ①
对n用归纳法
n=1时显然成立
(2p+1)^(n+1)=(2p+1)^n*(2p+1)
≥[(2p)^n+(2p-1)^n]*(2p+1)
>(2p)^(n+1)+(2p-1)^(n+1)
成立,所以命题①成立
令p=n,原不等式得证
请问这样归纳是否合理
▼优质解答
答案和解析
是不合理的.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
前面都没有问题,关键是你的归纳法并没有证明出来p≤n时 ①成立.
来仔细分析一下,你的归纳法中,(你写得不大规范,我给你改成了严格一点的形式来分析错误)你假设当n=k时,对于p≤k,①成立,来证明n=k+1时,对于p≤k+1,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立.但是你的证明中只证出来了对于p≤k时,(2p+1)^(k+1)≥(2p)^(k+1)+(2p-1)^(k+1)成立(因为你利用了假设条件,而假设条件仅限于当p≤k时成立),而当p=k+1时式子是否成立根本没有给出证明.
后面你又说令p=n,明显错误.相当于根本没有证明.
看了 一个不等式证明已知n∈N+,...的网友还看了以下:
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
叠加法求通项是否需要在最后验证n=1在用叠加法求通项的时候,如a(n)-a(n-1)=2n-1列出 2020-07-13 …
数学归纳法的题用数学归纳法证明1+a+a^2+a^3+.+a^(n+1)=[1-a^(n+2)]/ 2020-08-01 …
一道关于数学归纳法证明题的问题求证:当n≥1(n∈N*)时,(1+2+...+n)(1+1/2+. 2020-08-01 …
用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N*)时,第一步验证n 2020-08-01 …
用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n 2020-08-01 …
用数学归纳法证明“l+2+22+…+2n+2=2n+3-1,n∈N*”,在验证n=1时,左边计算所 2020-08-01 …
用数学归纳法证明1+a+a2+…+an+1=1-an+21-a(a≠0,1,n∈N*),在验证n= 2020-08-01 …
数学归纳法一个关于自然数n的命题,若验证n=1时命题成立,并假设n=k时命题成立的基础上,证明了n 2020-08-03 …
已知数列An/An-1=n/n-1A1=2,则An的表达式为?解此题时要不要分类,分为n=1与n》2 2020-12-24 …