早教吧作业答案频道 -->数学-->
初等数论的几个问题(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1(2)求使2^n+1能被5整除的一切正整数n,并证明你的结论(3)设n>0,证明5不整除(1^n+2^n+3^n+4^n)的充分必要条件是4|
题目详情
初等数论的几个问题
(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1
(2)求使2^n+1能被5整除的一切正整数n,并证明你的结论
(3)设n>0,证明5不整除(1^n+2^n+3^n+4^n)的充分必要条件是4|n
(4)当a,b都是奇数时,3^a+(b-c)²c是奇数还是偶数
(5)设n≥2,证明101010……1(其中有n个0)是合数
(6)设n≥1,证明7^(2^n)同余1(mod2^(n+2))
(7)今天是星期四,过了789……789(15个789)天后是星期几
(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1
(2)求使2^n+1能被5整除的一切正整数n,并证明你的结论
(3)设n>0,证明5不整除(1^n+2^n+3^n+4^n)的充分必要条件是4|n
(4)当a,b都是奇数时,3^a+(b-c)²c是奇数还是偶数
(5)设n≥2,证明101010……1(其中有n个0)是合数
(6)设n≥1,证明7^(2^n)同余1(mod2^(n+2))
(7)今天是星期四,过了789……789(15个789)天后是星期几
▼优质解答
答案和解析
(1)n是奇数,2^n=2^(2k+1)=4^k *2
4^k模3余1,2* 4^k模3余2,故3| (2^n+1)
如果n是偶数,(2^n+1)=4^s +1 除3余2
(2)2^n 除5余4即可,也就是4* 2^(n-2) 除5余4即可
也就是
2^(n-2) 除5余1即可
根据费马小定理,得到n-2=4+5k
从而n=5s+1,s>0的整数 即可
(3)必要性显然,充分性5卜(1^n+2^n+3^n+4^n
)
讨论一下n除以4的余数即可,用一用费马小定理求出
1^n,2^n,3^n,4^n除以5的余数就是了
(4)3^a是奇数,(b-c)² *c是偶数,故结果是偶数
楼主你题目太多了,悬赏又那么低,慢慢给你做
4^k模3余1,2* 4^k模3余2,故3| (2^n+1)
如果n是偶数,(2^n+1)=4^s +1 除3余2
(2)2^n 除5余4即可,也就是4* 2^(n-2) 除5余4即可
也就是
2^(n-2) 除5余1即可
根据费马小定理,得到n-2=4+5k
从而n=5s+1,s>0的整数 即可
(3)必要性显然,充分性5卜(1^n+2^n+3^n+4^n
)
讨论一下n除以4的余数即可,用一用费马小定理求出
1^n,2^n,3^n,4^n除以5的余数就是了
(4)3^a是奇数,(b-c)² *c是偶数,故结果是偶数
楼主你题目太多了,悬赏又那么低,慢慢给你做
看了 初等数论的几个问题(1)证明...的网友还看了以下:
一个数学问题极限的一个定义:设{xn}为一数列,如果存在常数a,对于任意给定的正数z(不论它多么小 2020-04-09 …
高数——用定义法证明数列极限的思路”设{xn}为一数列,如果存在常数a,对任意给定的正数ε(不论它 2020-04-11 …
s(n)表示自然数n数字和如s(1)=1,s(12)=3,s(516)=12,等等、试问是否有自然 2020-05-16 …
若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象.若自然数n使得三个数的加 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
极限定义问题定义是:设{Xn}为一数列,如果存在常数a,对于任意给定的正数ε(不论它多么小),总存 2020-05-16 …
设等比数列an满足:Sn=2n方+a(n属于自然数+)1.求数列an的通项公式,并求最小的自然数n 2020-05-23 …
形如根号M正负2根号N的化简,只要我们找出两个数A,B使a加b等于m,a乘以b等于n,使得(根号a 2020-06-06 …
数列极限为什么不直接定义成:当n趋向无穷时,若Xn=a,则a为数列极限.书上定义的是,对任意正数€ 2020-08-02 …
正项级数∑an收敛,对任意给定的ε>0,存在正整数N,使得n>N时,对任意的正整数p,a(n+1)+ 2020-10-31 …