早教吧作业答案频道 -->数学-->
微积分余式定理remaindertheorem.完全不懂怎么用.整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f
题目详情
微积分余式定理 remainder theorem.完全不懂怎么用.
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
▼优质解答
答案和解析
f(x)=(x-a)q(x)+R,
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
看了 微积分余式定理remaind...的网友还看了以下:
求(1+x+1/x平方)的10次方展开试中的常数我是怎样算的。T(r+1)=C(10,r)*(1+ 2020-05-13 …
定义运算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c为常数),r(x+y) 2020-05-13 …
我们知道:正弦函数sinθ=y/r正弦(sin):角α的对边比上斜边余弦函数cosθ=x/r余弦( 2020-06-05 …
高数偏导问题设r=(x,y,z),r=IrI,r≠0,时f(x)有连续导数,求f(r)分别对x,y 2020-07-20 …
1.已知集合A={y|y=|x|,x∈R},B={y|y=2-x^,x∈R},求A∩B?2.已知集 2020-07-20 …
若可微函数z=f(x,y)在极坐标系下只是θ的函数,证明:x(∂f/∂x)+y(∂f/(∂y)=0 2020-07-21 …
设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q( 2020-07-30 …
xy平面内圆周运动的运动方程书上怎么写的是x=Rsinwt呢明明应该是x=Rcoswt呀其中w是角 2020-07-31 …
1.M∪{1}={1,2,3},则M有(?)个.2.S、T是两个非空集集合,且互不包含,则S∪(S 2020-08-01 …
具有相同电子层结构的五种微粒:X+、Y2+、W、Z2-、R-,下列分析不正确的是[]A.原子序数:Y 2020-11-26 …