早教吧作业答案频道 -->数学-->
微积分余式定理remaindertheorem.完全不懂怎么用.整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f
题目详情
微积分余式定理 remainder theorem.完全不懂怎么用.
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
▼优质解答
答案和解析
f(x)=(x-a)q(x)+R,
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
看了 微积分余式定理remaind...的网友还看了以下:
matlab matlabc=40r=120a=96o=20y=3(角度)f=0.2[x]=sol 2020-05-16 …
为什么万有引力定律是F=mMG/r²,根据F正比于M/r²,F‘正比于m/r²,则F=k1M/r² 2020-05-22 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点( 2020-07-26 …
高数.设f:R→R,对于每个X属于R,f(x)=x2(上标).显然是个映射,定义域Df=R.值域y 2020-07-30 …
关于高一函数的换元法已知f(x-1)=x²-2x,求f(x)老师给的解题过程:设t=x-1∵x∈R 2020-08-01 …
已知定义在R上的奇函数f(x)满足f(x+1)=-f(x)且在[0,1)上单调递增,记a=f(1/ 2020-08-01 …
文科函数,急1函数f(x)=x^3-a^x-1,若f(x)在实数集R上单调递增,求实数a的取值范围? 2020-11-21 …
高中函数设f(x)是定义在R上的奇函数,切当x≥0时f(x)=x^2,若对任意的x∈[t,t+2], 2020-12-08 …
f(2010)=f(335*6)=f(0)以六为周期,是六的倍数可以等于f(0)那有余数怎么办,等于 2021-01-16 …