早教吧作业答案频道 -->其他-->
设f(x)在(-1,1)内具有二阶连续导数且f″(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在惟一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;(2)limx→0θ(x)=12.
题目详情
设f(x)在(-1,1)内具有二阶连续导数且f″(x)≠0,试证:
(1)对于(-1,1)内的任一x≠0,存在惟一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
(2)
θ(x)=
.
(1)对于(-1,1)内的任一x≠0,存在惟一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
(2)
lim |
x→0 |
1 |
2 |
▼优质解答
答案和解析
证:(1)由拉格朗日中值定理,∀x∈(-1,1)且x≠0,∃θ∈(0,1),使f(x)=f(0)+xf′(θ(x)x)(θ与x有关);
又由f''(x)连续而f''(x)≠0,
∴f″(x)在(1,-1)不变号,
∴f′(x)在(1,-1)严格单调的,
∴满足f(x)=f(0)+xf′(θ(x)x)的θ唯一.
(2)由题意,根据泰勒公式有:
f(x)=f(0)+xf′(0)+
f″(0)+o(x2)
又由第一问:f(x)=f(0)+xf′(θ(x)x)
∴[f′(θ(x)x)−f′(0)]x=
f″(0)+o(x2)
上式两边同时除以x2,再令x→0,得:
=
[
f″(0)+
]
即:
[
•
]=f″(0)
θ(x)=
f″(0)
∴
θ(x)=
又由f''(x)连续而f''(x)≠0,
∴f″(x)在(1,-1)不变号,
∴f′(x)在(1,-1)严格单调的,
∴满足f(x)=f(0)+xf′(θ(x)x)的θ唯一.
(2)由题意,根据泰勒公式有:
f(x)=f(0)+xf′(0)+
x2 |
2 |
又由第一问:f(x)=f(0)+xf′(θ(x)x)
∴[f′(θ(x)x)−f′(0)]x=
1 |
2 |
上式两边同时除以x2,再令x→0,得:
lim |
x→0 |
f′(θ(x)x)−f′(0) |
x |
lim |
x→0 |
1 |
2 |
o(x2) |
x |
即:
lim |
x→0 |
f′(θ(x)x)−f′(0) |
θ(x)x |
θ(x)x |
x |
lim |
x→0 |
1 |
2 |
∴
lim |
x→0 |
1 |
2 |
看了 设f(x)在(-1,1)内具...的网友还看了以下:
关于导数的问题,搞不懂书上写着:1.函数y=f(x)=c的导数因为Δy/Δx=f(x+Δx)-f(x 2020-03-30 …
看不懂数学导数的教材求解释书上写着:1.函数y=f(x)=c的导数因为Δy/Δx=f(x+Δx)- 2020-05-17 …
怎样用乘积求导、复合函数求导公式证明商求导公式?已知乘积求导[u(x)v(x)]'=u(x)'v( 2020-06-03 …
如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0?如果f(x)在x0可导,g 2020-06-11 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
设f(x)可导,F(x)=f(x)(1+|x|),要使F(x)在x=0处可导,则必有()设f(x) 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
为什么y=[x/(x+1)]^x不能直接求导?如题,标准答案先对两边取对数,再求导.我直接当成复合函 2020-12-03 …