早教吧作业答案频道 -->其他-->
已知y=f(x)=xlnx.(1)求函数y=f(x)的图像在x=e处的切线方程;(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.给过程
题目详情
已知y=f(x)=xlnx.
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.
给过程
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.
给过程
▼优质解答
答案和解析
1、切线方程 x=e 点 y=f(e)=elne=e
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1
看了 已知y=f(x)=xlnx....的网友还看了以下:
已知f(x)是R上的偶函数,当x≧0时,f(x)=√x,(1)求f(x)的解析式(2)判断f(已知f 2020-03-31 …
1.求f(x)=x²-2x-3在下列区间上的值域①R②[-3,0]③[2,3]④[0,3]2.已知 2020-05-02 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
已知f(x)是定义域在R上的偶函数,且x≤0时,f(x)=log1/2(1-x)1.求f(0),已 2020-07-08 …
f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=2^x/4^x+1)求:(1)求f(x 2020-07-31 …
设函数y=f(x)是定义在R上的函数.对任意正数x,y都有f(xy)=f(x)+f(y);当x大于 2020-08-01 …
已知函数f(x)=-x3+x2,x=1,其中a>0(1)求f(x)已知函数f(x)=-x3+x2, 2020-08-02 …
1.定义在R上的函数f(x),对任意的x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y) 2020-11-20 …
已知函数y=f(x)是定义在0到正无穷上的减函数,且满足f(x.y)=f(x)+f(y),f(2\1 2020-12-08 …
急!高一“函数的概念”中的几道题目.1.已知函数f(x+1)=X^2-4x+1,求f(x)2.[变式 2020-12-08 …