早教吧作业答案频道 -->其他-->
已知y=f(x)=xlnx.(1)求函数y=f(x)的图像在x=e处的切线方程;(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.给过程
题目详情
已知y=f(x)=xlnx.
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.
给过程
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立.
给过程
▼优质解答
答案和解析
1、切线方程 x=e 点 y=f(e)=elne=e
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1
看了 已知y=f(x)=xlnx....的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
E-R图是表示概念模型的有效工具之一,E-R图中使用菱形框表示()。A.实体B.联系C.实体的属性D 2020-05-24 …
有没有这个求导公式如f(x)=(x-a)^2(x+b)e^x,所以f'(x)=2(x-a)(x+b 2020-06-04 …
设a是实数,函数f(x)=e^2x+|e^x-a|(x属于R)(1)当a小于等于0时,求满足不等式 2020-06-08 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
你能辨别下列各组字,并用这个字组成一个成语吗?(1)A.戍B.戌C.戎E.戒A.B.C.E.(2) 2020-06-26 …
(2011•通州区一模)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射 2020-07-09 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey- 2020-07-09 …
设实数a,b,c,d,e同时满足关系:a+b+c+d+e=8,a2+b2+c2+d2+e2=16, 2020-07-09 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …