早教吧作业答案频道 -->数学-->
已知,点A(10,0)B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB于D(如图1)(1)求证:CD是⊙P的切线;(2)求当⊙P与OB相切
题目详情
已知,点A(10,0)B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB于D(如图1)

(1)求证:CD是⊙P的切线;
(2)求当⊙P与OB相切时⊙P的半径;
(3)在(2)的情况下,设(2)中⊙P与OB的切点为E,连接PB交CD于点F(如图2)
①求CF的长;
②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.

(1)求证:CD是⊙P的切线;
(2)求当⊙P与OB相切时⊙P的半径;
(3)在(2)的情况下,设(2)中⊙P与OB的切点为E,连接PB交CD于点F(如图2)
①求CF的长;
②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.
▼优质解答
答案和解析
(1)连接PC,过B作BN⊥x轴于点N.
∵PC=PA(⊙P的半径),
∴∠1=∠2(等边对等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=
=10(勾股定理),
∴OA=OB,
∴∠OBA=∠1(等边对等角),
∴∠OBA=∠2(等量代换),
∴PC∥OB(同位角相等,两直线平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD为⊙P的切线;
(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.
∵⊙P与OB相切于点E,则OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=
=
,
在Rt△OBN中,sin∠BON=
=
=
,
∴
=
,
解得:r=
;
(3)①如图3,∵由(2)知r=
,
∴在Rt△OPE中,OE=
=
=
(勾股定理),
∵∠PCD=∠CDE=∠PED=90°,
∴四边形PCDE是矩形.
又∵PE=PC(⊙O的半径),
∴矩形PCDE是正方形,
∴DE=DC=r=
,
∴BD=OB-OE-DE=10-

∵PC=PA(⊙P的半径),
∴∠1=∠2(等边对等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=
ON2+BN2 |
∴OA=OB,
∴∠OBA=∠1(等边对等角),
∴∠OBA=∠2(等量代换),

∴PC∥OB(同位角相等,两直线平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD为⊙P的切线;
(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.
∵⊙P与OB相切于点E,则OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=
PE |
OP |
r |
10−r |
在Rt△OBN中,sin∠BON=
BN |
OB |
8 |
10 |
4 |
5 |
∴
r |
10−r |
4 |
5 |
解得:r=
40 |
9 |

(3)①如图3,∵由(2)知r=
40 |
9 |
∴在Rt△OPE中,OE=
OP2−PE2 |
(10−
|
10 |
3 |
∵∠PCD=∠CDE=∠PED=90°,
∴四边形PCDE是矩形.
又∵PE=PC(⊙O的半径),
∴矩形PCDE是正方形,
∴DE=DC=r=
40 |
9 |

∴BD=OB-OE-DE=10-
看了 已知,点A(10,0)B(6...的网友还看了以下:
如图,数轴上点A,B,D对应点的数分别是-400.200-800,动点P,Q分别从点D,O同时出发 2020-06-12 …
如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,O的半径为4.点P是AB上的一动点 2020-07-20 …
如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点 2020-07-26 …
如图,AB是圆圈O的直径,AB=10,DC切⊙O于C,DC切⊙O于点C,AD⊥DC,垂足为D,AD 2020-07-30 …
如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠CAB的平分线 2020-07-31 …
如图,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,则∠B的 2020-07-31 …
已知:在直径是10的O中,AB的度数是60°,求弦AB的弦心距. 2020-08-01 …
如图,AB是半圆O的直径,点P(不与点A,B重合)为半圆上一点.将图形沿BP折叠,分别得到点A,O的 2020-11-04 …
如图,O为△ABC内一点,∠A=80°,∠CBO=1/m∠CBA,∠BCO=1/m∠BCA(1)若m 2020-12-25 …
如图,O为△ABC内一点,∠A=80°,∠CBO=1/m∠CBA,∠BCO=1/m;;∠BCA①若m 2020-12-25 …