早教吧作业答案频道 -->其他-->
对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.(1)
题目详情
对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.
(1)求证函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设函数f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切t∈R恒成立,求实数t的取值范围.
(3)若函数g(x)=mx+
是区间[-2,+∞)上的“U型”函数,求实数m和n的值.
(1)求证函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设函数f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切t∈R恒成立,求实数t的取值范围.
(3)若函数g(x)=mx+
| x2+2x+n |
▼优质解答
答案和解析
(1)当x∈[1,3]时,f(x)=x-1+3-x=2,
当x∉[1,3]时,f(x)=|x-1|+|x-3|>|x-1+3-x|=2,
故存在闭区间[a,b]=[1,3]⊆R和常数C=2符合条件,
所以函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)因为不等式|t-1|+|t-2|≤f(x)对一切x∈R恒成立,
所以|t-1|+|t-2|≤f(x)min,
由(1)可知f(x)min=(|x-1|+|x-3|)min=2,
所以|t-1|+|t-2|≤2,
解得:
≤t≤
;
(3)由“U型”函数定义知,存在闭区间[a,b]⊆[-2,+∞)和常数c,使得对任意的x∈[a,b],
都有g(x)=mx+
=c,即
=c-mx,
所以x2+2x+n=(c-mx)2恒成立,即x2+2x+n=m2x2-2cmx+c2对任意的x∈[a,b]成立,
所以
,所以
或
当x∉[1,3]时,f(x)=|x-1|+|x-3|>|x-1+3-x|=2,
故存在闭区间[a,b]=[1,3]⊆R和常数C=2符合条件,
所以函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)因为不等式|t-1|+|t-2|≤f(x)对一切x∈R恒成立,
所以|t-1|+|t-2|≤f(x)min,
由(1)可知f(x)min=(|x-1|+|x-3|)min=2,
所以|t-1|+|t-2|≤2,
解得:
| 1 |
| 2 |
| 5 |
| 2 |
(3)由“U型”函数定义知,存在闭区间[a,b]⊆[-2,+∞)和常数c,使得对任意的x∈[a,b],
都有g(x)=mx+
| x2+2x+n |
| x2+2x+n |
所以x2+2x+n=(c-mx)2恒成立,即x2+2x+n=m2x2-2cmx+c2对任意的x∈[a,b]成立,
所以
|
|
作业帮用户
2017-10-09
|
看了 对定义在区间D上的函数f(x...的网友还看了以下:
f(a)+f(b)=f(a+b)对于任意a,b属于P,则存在k,使f(x)=kx 2020-04-26 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
两道函数周期问题怎么求证?若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立, 2020-06-02 …
一道高中数学题(函数)满意加分证明:1.若F(X)对任意实数X,都有F(A+X)=F(B-X)则F 2020-06-06 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的 2020-07-26 …
f(x)定义在闭区间[a,b]上,开区间(a,b)内单调递增,则在(a,b)内任意一点x,有f(x 2020-08-01 …
已知m=(2cosx2根号3sinx,1),n=(cosx,-y),满足mn=0(1)将y表示为x的 2020-11-01 …
一直函数f(x)对任意实属a,b都满足:f(a+b)=f(a)+f(b),且f(2)=3,则f(3) 2020-11-15 …
高一数学题,有关函数已知函数f(x)是R上的增函数,且f(x^2+x)>f(a-x)对一切x∈R都成 2020-12-08 …
扫描下载二维码