早教吧作业答案频道 -->数学-->
设函数y=f(x)在点x0处可微,则下面表达式不正确的是()A.limx→x0f(x)=f(x0)B.dy|x=x0=f′(x0)dxC.f(x)=f(x0)+f′(x0)(x-x0)D.dy-△y=o(△x)(△x→0)
题目详情
设函数y=f(x)在点x0处可微,则下面表达式不正确的是( )
A.
f(x)=f(x0)
B. dy|x= x0=f′(x0)dx
C. f(x)=f(x0)+f′(x0)(x-x0)
D. dy-△y=o(△x)(△x→0)
A.
lim |
x→x 0 |
B. dy|x= x0=f′(x0)dx
C. f(x)=f(x0)+f′(x0)(x-x0)
D. dy-△y=o(△x)(△x→0)
▼优质解答
答案和解析
A正确:
因为函数f(x)可微是函数f(x)连续的必要条件,
故y=f(x)在点x0处可微⇒y=f(x)在点x0处连续,
再由函数连续的充要条件可得:
f(x)=f(x).
B正确:
因为y=f(x)在点x0处可微,故由微分的定义可得,
dy|x=x0=f′(x0)dx.
选项D正确:
因为y=f(x)在点x0处可微,
故由微分的定义可得,∃A∈R,使得△y=Adx+o(△x),
且dy=Adx,
从而,dy-△y=o(△x).
选项C错误:
如果因为y=f(x)在点x0处可微,则
f(x)≈f(x0)+f′(x0)(x-x0),
只是近似相等,而不是“=”,
正确的描述应该是:
f(x)=f(x0)+f′(x0)(x-x0)+o(△x).
综上,不正确的选项为:C.
故选:C.
因为函数f(x)可微是函数f(x)连续的必要条件,
故y=f(x)在点x0处可微⇒y=f(x)在点x0处连续,
再由函数连续的充要条件可得:
lim |
x→x0 |
B正确:
因为y=f(x)在点x0处可微,故由微分的定义可得,
dy|x=x0=f′(x0)dx.
选项D正确:
因为y=f(x)在点x0处可微,
故由微分的定义可得,∃A∈R,使得△y=Adx+o(△x),
且dy=Adx,
从而,dy-△y=o(△x).
选项C错误:
如果因为y=f(x)在点x0处可微,则
f(x)≈f(x0)+f′(x0)(x-x0),
只是近似相等,而不是“=”,
正确的描述应该是:
f(x)=f(x0)+f′(x0)(x-x0)+o(△x).
综上,不正确的选项为:C.
故选:C.
看了 设函数y=f(x)在点x0处...的网友还看了以下:
若函数G(X)=F(X)SIN(πX)为以2为最小正周期的奇函数,则函数(X)可以是ACOS(πX/ 2020-03-30 …
函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小 2020-05-13 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
有以下命题:(1)若函数f(x)既是奇函数又是偶函数,则f(x)的值域是{0};(2)若f(x)是 2020-06-26 …
已知函数f(x+y,x-y)=x*x-y*y,则f(x,y)的全微分的值是多少2.如果函数f(x已 2020-07-21 …
下列说法中,正确的有()①变量x,y满足y=3x-1,则y是x的函数;②变量x,y满足|y|=x, 2020-07-25 …
设n是一个正整数,则函数x+1/(nx^n)在正实轴上的最小值是 2020-07-30 …
函数与极限的题(详解)1.设函数f(x)=arctan1(x>1),f(x)=a(x=0),f(x) 2020-10-31 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …