早教吧作业答案频道 -->数学-->
已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2
题目详情
已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:


(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).


(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
▼优质解答
答案和解析
(1)过点E作EH∥FG,连接AH、FH,如图所示:

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2.
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2.
(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2.
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2.
(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.

看了已知,如图:正方形ABCD,将...的网友还看了以下:
在平面直角坐标系中,对于平面内任何一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b) 2020-04-26 …
在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1f(a,b)=(-a,b). 2020-04-26 …
证明函数非奇非偶比如f(x)=ax+1/x²,参考答案写的是当a≠0时、用特殊数值法取f(1)得出 2020-06-05 …
如图,ab垂直于bd于b,df垂直于f,bc=be,说明ac=de的理由ab垂直于bd于B,df垂 2020-06-29 …
关于带电粒子所受洛伦兹力F、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是()A.F 2020-07-13 …
为什么f(x+1)可以代换f(x)中的x而反之却不行?为什么f(x+1)可以代换f(x)中的x而反 2020-07-29 …
换元法的原理例如f(x+1)=(x+1)^2+(x+1)+2求f(x),令t=x+1,则f(t)= 2020-08-01 …
函数的奇偶性的加减或正负号比如如f(3)-f(1)是不是在奇函数或偶函数情况下可以直接减变成f(2 2020-08-01 …
如图所示,在三角形ABC中,AD是角BAC的平分线,DE垂直AB于E,DF垂直AC于F.当有一点G从 2020-11-02 …
当f'(x)=g'(x)时是否有∫df(x)=∫dg(x)?如题,老师给我说f'(x)=g'(x)时 2020-11-02 …