早教吧作业答案频道 -->数学-->
求解一道卷积的题f(t)=t^2t≥0g(t)=u(t-1)t≥0求f*g不好意思忘了说了u(t-1)是单位单位阶跃函数u(t)=1t≥0=0t<0
题目详情
求解一道卷积的题
f(t)=t^2 t≥0
g(t)=u(t-1) t≥0
求f*g
不好意思 忘了说了 u(t-1) 是单位单位阶跃函数 u(t)=1 t≥0
=0 t<0
f(t)=t^2 t≥0
g(t)=u(t-1) t≥0
求f*g
不好意思 忘了说了 u(t-1) 是单位单位阶跃函数 u(t)=1 t≥0
=0 t<0
▼优质解答
答案和解析
默认没给定义的地方都取0.
由卷积的定义,f*g(s) = ∫{-∞,+∞} f(t)g(s-t)dt.
当t < 0,有f(t) = 0,于是上式可化为∫{0,+∞} t²g(s-t)dt.
而当s-t < 0,有g(s-t) = 0.
于是当s ≥ 0,上式可进一步化为∫{0,s} t²g(s-t)dt = ∫{0,s} ut²(s-t-1)dt = u(s-1)s³/3-us^4/4.
而当s < 0,对任意t ≥ 0有s-t < 0,g(s-t) = 0,故∫{0,+∞} t²g(s-t)dt = 0.
因此f*g(s) = us³(s-4)/12 当s ≥ 0.
f*g(s) = 0,当s < 0.
由卷积的定义,f*g(s) = ∫{-∞,+∞} f(t)g(s-t)dt.
当t < 0,有f(t) = 0,于是上式可化为∫{0,+∞} t²g(s-t)dt.
而当s-t < 0,有g(s-t) = 0.
于是当s ≥ 0,上式可进一步化为∫{0,s} t²g(s-t)dt = ∫{0,s} ut²(s-t-1)dt = u(s-1)s³/3-us^4/4.
而当s < 0,对任意t ≥ 0有s-t < 0,g(s-t) = 0,故∫{0,+∞} t²g(s-t)dt = 0.
因此f*g(s) = us³(s-4)/12 当s ≥ 0.
f*g(s) = 0,当s < 0.
看了 求解一道卷积的题f(t)=t...的网友还看了以下:
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
一位同学发现:o×1×2×3+1=1=1^21×2×3×4+1=25=5^22×3×4×5+1=1 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
lim[x-x^2ln(1+1/x)](X趋近于无穷大)算的过程是这样lim(x→+∞)[x-x²l 2020-10-31 …
已知(1+1/x)^x=e,e^x-1=x,limx→1(x+x^2+...+x^n-n)/(x-1 2020-10-31 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …
f(t)=1/(1-1/t),t>1求值域原题是:f(t)=t/(t-1),t>1求值域。法一:f( 2021-01-22 …
f(t)=1/(1-1/t),t>1求值域原题是:f(t)=t/(t-1),t>1求值域。法一:f( 2021-01-22 …