早教吧作业答案频道 -->数学-->
已知函数f(x)=(x-t)|x|(t∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当t>0时,若f(x)在区间[-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.
题目详情
已知函数f(x)=(x-t)|x|(t∈R).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当t>0时,若f(x)在区间[-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当t>0时,若f(x)在区间[-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.
▼优质解答
答案和解析
(Ⅰ) (1)f(x)=
,…(1分)
当t>0时,f(x)的单调增区间为[
,+∞),(-∞,0),单调减区间为[0,
]…(3分)
当t=0时,f(x)的单调增区间为(-∞,+∞)…(4分)
当t<0时,f(x)的单调增区间为[0,+∞),(-∞,
],单调减区间为[
,0)…(6分)
(Ⅱ)由(Ⅰ)知t>0时f(x)在(-∞,0)上递增,在(0,
)上递减,在(
,+∞)上递增
从而 当
≥2即t≥4时,M(t)=f(0)=0,…(7分),
m(t)=min{f(-1),f(2)}=min{-1-t,4-2t}…(8分)
所以,当4≤t≤5时,m(t)=-1-t,
故M(t)-m(t)=1+t≥5…(9分)
当t>5时,m(t)=4-2t,故M(t)-m(t)=2t-4>6…(10分)
当
<2≤t,即2≤t<4时,M(t)=f(0)=0,m(t)=min{f(-1),f(
)}=min{-1-t,-
}=-1-t,…(11分)
所以,M(t)-m(t)=t+1≥3…(12分)
当0<t<2时,M(t)=f(2)=4-2t…(13分)
m(t)=min{f(-1),f(
)}=min{-1-t,-
}=-1-t,…(11分)
所以,M(t)-m(t)=5-t>3…(14分)
综上所述,当t=2时,M(t)-m(t)取得最小值为3.…(15分)
|
当t>0时,f(x)的单调增区间为[
t |
2 |
t |
2 |
当t=0时,f(x)的单调增区间为(-∞,+∞)…(4分)
当t<0时,f(x)的单调增区间为[0,+∞),(-∞,
t |
2 |
t |
2 |
(Ⅱ)由(Ⅰ)知t>0时f(x)在(-∞,0)上递增,在(0,
t |
2 |
t |
2 |
从而 当
t |
2 |
m(t)=min{f(-1),f(2)}=min{-1-t,4-2t}…(8分)
所以,当4≤t≤5时,m(t)=-1-t,
故M(t)-m(t)=1+t≥5…(9分)
当t>5时,m(t)=4-2t,故M(t)-m(t)=2t-4>6…(10分)
当
t |
2 |
t |
2 |
t2 |
4 |
所以,M(t)-m(t)=t+1≥3…(12分)
当0<t<2时,M(t)=f(2)=4-2t…(13分)
m(t)=min{f(-1),f(
t |
2 |
t2 |
4 |
所以,M(t)-m(t)=5-t>3…(14分)
综上所述,当t=2时,M(t)-m(t)取得最小值为3.…(15分)
看了 已知函数f(x)=(x-t)...的网友还看了以下:
在坐标平面上有两个区域M和N,M是由y≥0、y≤x和y≤2-x三个不等式来确定的,N是随t变化的区 2020-05-13 …
阅读下面的材料已知三次方程x3+px2+qx+m=0有整数解t,其中p,q,m为整数.将t代入方程 2020-05-14 …
已知函数f(x)=(x-t)|x|(t∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当t>0时 2020-07-18 …
设a(0,t)b(0,t+6)若圆m是三角形abc的内接园求三角形面积最大值与最小值ps:圆方程为 2020-07-30 …
帮忙求个递推公式,从兔子繁殖问题衍生而来.m(0)=1,m(1)=1,m(2)=1,m(3)=2, 2020-08-01 …
方程组Ax=0以η1=(1,0,2)T,η2=(0,1,-1)T为其基础解系,则该方程的系数矩阵为 2020-08-02 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
设函数f(x,y)=(1+m/y)^x,m>0,Y>0设n是正整数,t是正实数,t满足f(n,1)= 2020-11-01 …
已知x,y是正整数,且xy+x+y=23,x^2+xy^2=120,求x^2+y^2的值.设m=xy 2020-11-03 …
如图所示,传送带的两个轮子半径均为r=0.八m,两个轮子最高点t、B在同一水平面内,t、B间距离L= 2020-12-12 …