早教吧作业答案频道 -->数学-->
k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的值.(3)若a,b的最大公约数为5,求k的值.
题目详情
k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.
(1)若a,b互质,证明a2-b2与a2、b2都互质;
(2)当a,b互质时,求k的值.
(3)若a,b的最大公约数为5,求k的值.
(1)若a,b互质,证明a2-b2与a2、b2都互质;
(2)当a,b互质时,求k的值.
(3)若a,b的最大公约数为5,求k的值.
▼优质解答
答案和解析
(1)设s为a2-b2与a2的最大公约数,
则a2-b2=su,a2=sv,u,v是正整数,
∴a2-(a2-b2)=b2=s(v-u),可见s是b2的约数,
∵a,b互质,
∴a2,b2互质,可见s=1.
即a2-b2与a2互质,同理可证a2-b2与b2互质;
(2)由题知:ma2=(m+116)b2,
m(a2-b2)=116b2,
∴(a2-b2)|116b2,
∵(a2-b2,b2)=(a2,b2)=1,
∵(a2-b2)|116,
所以a2-b2是116的约数,116=2×2×29,
a2-b2=(a-b)(a+b),
而a-b和a+b同奇偶性,且a,b互质,
∴a2-b2要么是4的倍数,要么是一个大于3的奇数,
∴(a-b)(a+b)=29 或(a-b)(a+b)=116,
∴a-b=1,a+b=29或a-b=1,a+b=116或a-b=2,a+b=58或a-b=4,a+b=29,
解得只有一组解符合条件,
a=15,b=14,
∴m(152-142)=116×142,
∴m=4×142=784,
∴k=784×152=176400;
(3)设a=5x,b=5y,即x,y的最大公约数为1,
则m(a2-b2)=116b2,
∴即m(25x2-25y2)=116(25y)2,
∴m(x2-y2)=116(y)2,
∵x,y互质,则有:m=24×72,
∴x=15,y=14,
a=75,b=70,m=784,
k=784×752=4410000.
则a2-b2=su,a2=sv,u,v是正整数,
∴a2-(a2-b2)=b2=s(v-u),可见s是b2的约数,
∵a,b互质,
∴a2,b2互质,可见s=1.
即a2-b2与a2互质,同理可证a2-b2与b2互质;
(2)由题知:ma2=(m+116)b2,
m(a2-b2)=116b2,
∴(a2-b2)|116b2,
∵(a2-b2,b2)=(a2,b2)=1,
∵(a2-b2)|116,
所以a2-b2是116的约数,116=2×2×29,
a2-b2=(a-b)(a+b),
而a-b和a+b同奇偶性,且a,b互质,
∴a2-b2要么是4的倍数,要么是一个大于3的奇数,
∴(a-b)(a+b)=29 或(a-b)(a+b)=116,
∴a-b=1,a+b=29或a-b=1,a+b=116或a-b=2,a+b=58或a-b=4,a+b=29,
解得只有一组解符合条件,
a=15,b=14,
∴m(152-142)=116×142,
∴m=4×142=784,
∴k=784×152=176400;
(3)设a=5x,b=5y,即x,y的最大公约数为1,
则m(a2-b2)=116b2,
∴即m(25x2-25y2)=116(25y)2,
∴m(x2-y2)=116(y)2,
∵x,y互质,则有:m=24×72,
∴x=15,y=14,
a=75,b=70,m=784,
k=784×752=4410000.
看了 k、a、b为正整数,k被a2...的网友还看了以下:
用C#求出1~599中能被3整除,且至少有一位数字为5的所有整数.如15、51、513均是满足条件 2020-04-07 …
编写一个函数,形式为:intfun1(intn),该函数判断一个四位整数是否能被3整除且其中至少有 2020-05-15 …
目前,有人扬言已经求出了最大的质数,可经我证实,最大的质数根本不存在!设:所有质数的积为xx能被所 2020-05-17 …
若关于x、y的方程组,x+3y=6,x+my=-2有整数解(即x、y的值均为整数)则满足条件的所有 2020-06-06 …
定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数. 2020-06-14 …
已知存在唯一一对正整数(x,y)⋯⋯1)已知存在唯一一对正整数(x,y)满足方程x^2+84x+2 2020-07-17 …
acm最短距离的点Description:给出一些整数对,它们表示一些平面上的坐标点,给定一个点, 2020-07-24 …
在整数集Z中,被4除所得余数为k的所有整数组成一个“类”,记为[k]={4n+k|n∈Z},k=0 2020-07-26 …
一个正整数的因数个数有什么特点??你能否根据因数个数的不同将所有正整数分为三类?一个正整数的因数个 2020-07-31 …
如果一个正整数能表示为两个正整数的平方差,那么这个数称为智慧数在正整数中,所有的奇数都是智慧数吗? 2020-07-31 …